BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 17154247)

  • 1. 15N NMR study of substituted 2-(phenylamino)-5-phenyl-1,3,4-oxadiazoles.
    Gierczyk B; Nowak-Wydra B; Grajewski J; Zalas M
    Magn Reson Chem; 2007 Feb; 45(2):123-7. PubMed ID: 17154247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 17O NMR studies of substituted 1,3,4-oxadiazoles.
    Gierczyk B; Zalas M; Kaźmierczak M; Grajewski J; Pankiewicz R; Wyrzykiewicz B
    Magn Reson Chem; 2011 Oct; 49(10):648-54. PubMed ID: 21919055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substituent effects on 15N and 13C NMR chemical shifts of 3-phenylisoxazoles: a theoretical and spectroscopic study.
    Schofield MH; Sorel MA; Manalansan RJ; Richardson DP; Markgraf JH
    Magn Reson Chem; 2006 Sep; 44(9):851-5. PubMed ID: 16804868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multinuclear magnetic resonance studies of 2-aryl-1,3,4-thiadiazoles.
    Gierczyk B; Cegłowski M; Kaźmierczak M; Zalas M
    Magn Reson Chem; 2012 Sep; 50(9):637-41. PubMed ID: 22847904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 1H, 13C and 15N NMR study in solution and in the solid state of six N-substituted pyrazoles and indazoles.
    Claramunt RM; Santa María MD; Sanz D; Alkorta I; Elguero J
    Magn Reson Chem; 2006 May; 44(5):566-70. PubMed ID: 16395736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete 1H and 13C NMR spectral assignment of cis- and trans- 3-(2-[2-(4-methylphenyl)ethenyl]phenyl])sydnones.
    Butković K; Marinić Z; Sindler-Kulyk M
    Magn Reson Chem; 2004 Dec; 42(12):1053-5. PubMed ID: 15390029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical analysis of solvent effects on nitrogen NMR chemical shifts in oxazoles and oxadiazoles.
    Ksiazek A; Borowski P; Wolinski K
    J Magn Reson; 2009 Apr; 197(2):153-60. PubMed ID: 19135396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with methyl and phenyl derivatives of 2,2'-bipyridine and 1,10-phenanthroline.
    Pazderski L; Tousek J; Sitkowski J; Kozerski L; Szłyk E
    Magn Reson Chem; 2007 Dec; 45(12):1045-58. PubMed ID: 18044804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 13C and 15N NMR chemical shifts of 1-(2',4'-dinitrophenyl) and 1-(2',4',6'-trinitrophenyl) pyrazoles in the solid state and in solution.
    Angeles García M; Claramunt RM; Elguero J
    Magn Reson Chem; 2008 Jul; 46(7):697-700. PubMed ID: 18383432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical investigations of oxygen-17 NMR chemical shifts to discriminate among helical forms.
    De Gortari I; Galván M; Ireta J; Segall M; Pickard CJ; Payne M
    J Phys Chem A; 2007 Dec; 111(50):13099-105. PubMed ID: 18020316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 15N NMR chemical shifts of ring substituted benzonitriles.
    Zácek P; Dransfeld A; Exner O; Schraml J
    Magn Reson Chem; 2006 Dec; 44(12):1073-80. PubMed ID: 16991110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of glycosyl-triazole linked 1,2,4-oxadiazoles.
    dos Anjos JV; Sinou D; de Melo SJ; Srivastava RM
    Carbohydr Res; 2007 Nov; 342(16):2440-9. PubMed ID: 17689508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with quinoline, isoquinoline, and 2,2'-biquinoline.
    Pazderski L; Tousek J; Sitkowski J; Kozerski L; Szłyk E
    Magn Reson Chem; 2007 Dec; 45(12):1059-71. PubMed ID: 18044805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative structure-property relationships in boron nitrides: the 15N- and 11B chemical shifts.
    Marian CM; Gastreich M
    Solid State Nucl Magn Reson; 2001; 19(1-2):29-44. PubMed ID: 11407601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-field 1H MAS and 15N CP-MAS NMR studies of alanine tripeptides and oligomers: distinction of antiparallel and parallel beta-sheet structures and two crystallographically independent molecules.
    Suzuki Y; Okonogi M; Yamauchi K; Kurosu H; Tansho M; Shimizu T; Saitô H; Asakura T
    J Phys Chem B; 2007 Aug; 111(30):9172-8. PubMed ID: 17625826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1H and 13C NMR studies of 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indoles.
    Cruz-López O; Gallo MA; Espinosa A; Campos JM
    Magn Reson Chem; 2007 Feb; 45(2):185-8. PubMed ID: 17154240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral recognition of Schiff bases by 15N NMR spectroscopy in the presence of a dirhodium complex. Deuterium isotope effect on 15N chemical shift of the optically active Schiff bases and their dirhodium tetracarboxylate adducts.
    Rozwadowski Z; Nowak-Wydra B
    Magn Reson Chem; 2008 Oct; 46(10):974-8. PubMed ID: 18666208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. J-GFT NMR for precise measurement of mutually correlated nuclear spin-spin couplings.
    Atreya HS; Garcia E; Shen Y; Szyperski T
    J Am Chem Soc; 2007 Jan; 129(3):680-92. PubMed ID: 17227032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroacridines: part 29. 15N NMR chemical shifts of 9-substituted 1,2,3,4,5,6,7,8-octahydroacridines and their N-oxides-Taft, Swain-Lupton, and other types of linear correlations.
    Potmischil F; Marinescu M; Nicolescu A; Deleanu C; Hillebrand M
    Magn Reson Chem; 2008 Dec; 46(12):1141-7. PubMed ID: 18844244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilizing unsymmetrical indirect covariance processing to define 15N- 13C connectivity networks.
    Martin GE; Irish PA; Hilton BD; Blinov KA; Williams AJ
    Magn Reson Chem; 2007 Aug; 45(8):624-7. PubMed ID: 17563910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.