BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 17154306)

  • 1. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.
    Ayala-Parra P; Sierra-Alvarez R; Field JA
    J Hazard Mater; 2016 Nov; 317():335-343. PubMed ID: 27318730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing Fermentation May Enhance the Performance of Biological Sulfate-Reducing Bioreactors.
    Hessler T; Harrison STL; Banfield JF; Huddy RJ
    Environ Sci Technol; 2024 Feb; 58(6):2830-2846. PubMed ID: 38301118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptability of sulfur-disproportionating bacteria for mine water remediation under the pressures of heavy metal ions and high sulfate content.
    Qiu YY; Zou J; Xia J; Li H; Zhen Y; Yang Y; Guo J; Zhang L; Qiu R; Jiang F
    Water Res; 2024 Feb; 249():120898. PubMed ID: 38086206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A steady-state pH-control model for the biological production of elemental sulfur from sulfate in mining-influenced water.
    Schwarz A; Aybar M; Suárez J; Rittmann B
    Water Res; 2024 Feb; 250():121067. PubMed ID: 38150861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of heavy metal removal performance of sulfate-reducing bacteria using machine learning.
    Xiong B; Chen K; Ke C; Zhao S; Dang Z; Guo C
    Bioresour Technol; 2024 Apr; 397():130501. PubMed ID: 38417462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biooxidation of hydrogen sulfide to sulfur by moderate thermophilic acidophilic bacteria.
    Romero R; Viedma P; Cotoras D
    Biodegradation; 2024 Apr; 35(2):195-208. PubMed ID: 37639168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the factors of hydrogen sulfide production from lignite bacterial sulfate reduction based on response surface method.
    Deng Q; Li S; Yao M; Liu C; Zhang Z; Xiang S
    Sci Rep; 2023 Nov; 13(1):20537. PubMed ID: 37996568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioelectrochemical reactor to manage anthropogenic sulfate pollution for freshwater ecosystems: Mathematical modeling and experimental validation.
    Berens MJ; Deen TW; Chun CL
    Chemosphere; 2024 Jun; 357():142054. PubMed ID: 38642774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process Intensification for Enhanced Fluoride Removal and Recovery as Calcium Fluoride Using a Fluidized Bed Reactor.
    Sinharoy A; Lee GY; Chung CM
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38731865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effluent quality prediction of the sewage treatment based on a hybrid neural network model: Comparison and application.
    Wang Z; Dai H; Chen B; Cheng S; Sun Y; Zhao J; Guo Z; Cai X; Wang X; Li B; Geng H
    J Environ Manage; 2024 Feb; 351():119900. PubMed ID: 38157580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Advection-Diffusion Models and Neural Networks for Prediction of Advanced Water Treatment Effluent.
    Mortula MM; Abdalla J; Ghadban AA
    Environ Eng Sci; 2012 Jul; 29(7):660-668. PubMed ID: 22783063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of catalytic wet air oxidation process in microchannel reactor for TBBS wastewater treatment.
    Yang B; Li J; Wang J
    Environ Technol; 2023 Nov; ():1-9. PubMed ID: 37955604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of an intelligent control system To evaluate multiparametric effects on iron oxidation by thermophilic bacteria.
    Stoner DL; Miller KS; Fife DJ; Larsen ED; Tolle CR; Johnson JA
    Appl Environ Microbiol; 1998 Nov; 64(11):4555-65. PubMed ID: 9797322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural network prediction of thermophilic (65 degrees C) sulfidogenic fluidized-bed reactor performance for the treatment of metal-containing wastewater.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Jul; 97(4):780-7. PubMed ID: 17154306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfidogenic fluidized-bed treatment of metal-containing wastewater at low and high temperatures.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Apr; 96(6):1064-72. PubMed ID: 17004272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor.
    Kaksonen AH; Franzmann PD; Puhakka JA
    Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfidogenic fluidized-bed treatment of metal-containing wastewater at 8 and 65 degrees C temperatures is limited by acetate oxidation.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Water Res; 2007 Jun; 41(12):2706-14. PubMed ID: 17418880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overview of anaerobic treatment: thermophilic and propionate implications.
    Speece RE; Boonyakitsombut S; Kim M; Azbar N; Ursillo P
    Water Environ Res; 2006 May; 78(5):460-73. PubMed ID: 16752608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.