BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17154316)

  • 1. Oxidation of lactose to lactobionic acid by a Microdochium nivale carbohydrate oxidase: kinetics and operational stability.
    Nordkvist M; Nielsen PM; Villadsen J
    Biotechnol Bioeng; 2007 Jul; 97(4):694-707. PubMed ID: 17154316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scale-up of enzymatic production of lactobionic acid using the rotary jet head system.
    Hua L; Nordkvist M; Nielsen PM; Villadsen J
    Biotechnol Bioeng; 2007 Jul; 97(4):842-9. PubMed ID: 17154315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicological studies on Lactose Oxidase from Microdochium nivale expressed in Fusarium venenatum.
    Ahmad SK; Brinch DS; Friis EP; Pedersen PB
    Regul Toxicol Pharmacol; 2004 Jun; 39(3):256-70. PubMed ID: 15135207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic modeling of a bi-enzymatic system for efficient conversion of lactose to lactobionic acid.
    Van Hecke W; Bhagwat A; Ludwig R; Dewulf J; Haltrich D; Van Langenhove H
    Biotechnol Bioeng; 2009 Apr; 102(5):1475-82. PubMed ID: 18988269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green oxidation of renewable carbohydrates: lactobionic acid production as an example.
    Van Hecke W; Ludwig R; Dewulf J; Haltrich D; Van Langenhove H
    Commun Agric Appl Biol Sci; 2008; 73(1):9-13. PubMed ID: 18831236
    [No Abstract]   [Full Text] [Related]  

  • 6. Pyranose 2-oxidase (P2O): production from trametes versicolor in stirred tank reactor and its partial characterization.
    Pazarlioglu NK; Akkaya A; Tahsinsoy D
    Prep Biochem Biotechnol; 2009; 39(1):32-45. PubMed ID: 19090419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioconversion of D-glucose into D-glucosone by glucose 2-oxidase from Coriolus versicolor at moderate pressures.
    Karmali A; Coelho J
    Appl Biochem Biotechnol; 2011 Apr; 163(7):906-17. PubMed ID: 20872184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bubble-free oxygenation of a bi-enzymatic system: effect on biocatalyst stability.
    Van Hecke W; Ludwig R; Dewulf J; Auly M; Messiaen T; Haltrich D; Van Langenhove H
    Biotechnol Bioeng; 2009 Jan; 102(1):122-31. PubMed ID: 18698649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an ultrahigh-temperature process for the enzymatic hydrolysis of lactose. III. Utilization of two thermostable beta-glycosidases in a continuous ultrafiltration membrane reactor and galacto-oligosaccharide formation under steady-state conditions.
    Petzelbauer I; Splechtna B; Nidetzky B
    Biotechnol Bioeng; 2002 Feb; 77(4):394-404. PubMed ID: 11787012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Isolation and characterization of a cellobiose dehydrogenase formed by a asporogenic mycelial fungus INBI 2-26(-)].
    Karapetian KN; Iachkova SN; Vasil'chenko LG; Borzykh MN; Rabinovich ML
    Prikl Biokhim Mikrobiol; 2003; 39(6):642-51. PubMed ID: 14714477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of lactose-free galacto-oligosaccharide mixtures: comparison of two cellobiose dehydrogenases for the selective oxidation of lactose to lactobionic acid.
    Maischberger T; Nguyen TH; Sukyai P; Kittl R; Riva S; Ludwig R; Haltrich D
    Carbohydr Res; 2008 Aug; 343(12):2140-7. PubMed ID: 18353295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatically oxidized lactose and derivatives thereof as potential protein cross-linkers.
    van Wijk A; Siebum A; Schoevaart R; Kieboom T
    Carbohydr Res; 2006 Dec; 341(18):2921-6. PubMed ID: 17056020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of a carbohydrate: acceptor oxidoreductase from Paraconiothyrium sp. that produces lactobionic acid efficiently.
    Kiryu T; Nakano H; Kiso T; Murakami H
    Biosci Biotechnol Biochem; 2008 Mar; 72(3):833-41. PubMed ID: 18323642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of neutral cellobiose dehydrogenase from the ascomycete Chaetomium sp. INBI 2-26(-) and comparison with basidiomycetous cellobiose dehydrogenases.
    Karapetyan KN; Fedorova TV; Vasil'chenko LG; Ludwig R; Haltrich D; Rabinovich ML
    J Biotechnol; 2006 Jan; 121(1):34-48. PubMed ID: 16112765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide.
    Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Trametes versicolor laccase for the transformation of aqueous phenol.
    Kurniawati S; Nicell JA
    Bioresour Technol; 2008 Nov; 99(16):7825-34. PubMed ID: 18406607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The effect of structural organization of cholesterol aggregates in aqueous-organic media on its oxidation reaction, catalyzed by cholesterol oxidase].
    Aleksandrovskiĭ IaA; Titov VN
    Biokhimiia; 1993 Aug; 58(9):1408-19. PubMed ID: 8218565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a novel lactose oxidase in
    Lin SF; Li CK; Chung YP
    FEBS Open Bio; 2019 Feb; 9(2):364-373. PubMed ID: 30761260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production, properties and application to biocatalysis of a novel extracellular alkaline phenol oxidase from the thermophilic fungus Scytalidium thermophilum.
    Ogel ZB; Yüzügüllü Y; Mete S; Bakir U; Kaptan Y; Sutay D; Demir AS
    Appl Microbiol Biotechnol; 2006 Aug; 71(6):853-62. PubMed ID: 16389559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of NO release by N1-nitrosomelatonin: nucleophilic attack versus reducing pathways.
    De Biase PM; Turjanski AG; Estrin DA; Doctorovich F
    J Org Chem; 2005 Jul; 70(15):5790-8. PubMed ID: 16018670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.