These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 17154347)
1. Leaving group effects on the selectivity of the gas-phase fragmentation reactions of side chain fixed-charge-containing peptide ions. Roberts KD; Reid GE J Mass Spectrom; 2007 Feb; 42(2):187-98. PubMed ID: 17154347 [TBL] [Abstract][Full Text] [Related]
2. Substituent effects on the gas-phase fragmentation reactions of sulfonium ion containing peptides. Sierakowski J; Amunugama M; Roberts KD; Reid GE Rapid Commun Mass Spectrom; 2007; 21(7):1230-8. PubMed ID: 17330214 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of gas-phase rearrangement and competing fragmentation reactions on protein phosphorylation site assignment using collision induced dissociation-MS/MS and MS3. Palumbo AM; Reid GE Anal Chem; 2008 Dec; 80(24):9735-47. PubMed ID: 19012417 [TBL] [Abstract][Full Text] [Related]
4. A mass spectrometric and molecular orbital study of H2O loss from protonated tryptophan and oxidized tryptophan derivatives. Lioe H; O'Hair RA; Reid GE Rapid Commun Mass Spectrom; 2004; 18(9):978-88. PubMed ID: 15116425 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic insights into the multistage gas-phase fragmentation behavior of phosphoserine- and phosphothreonine-containing peptides. Palumbo AM; Tepe JJ; Reid GE J Proteome Res; 2008 Feb; 7(2):771-9. PubMed ID: 18181561 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms for the proton mobility-dependent gas-phase fragmentation reactions of S-alkyl cysteine sulfoxide-containing peptide ions. Froelich JM; Reid GE J Am Soc Mass Spectrom; 2007 Sep; 18(9):1690-705. PubMed ID: 17689096 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms for the selective gas-phase fragmentation reactions of methionine side chain fixed charge sulfonium ion containing peptides. Amunugama M; Roberts KD; Reid GE J Am Soc Mass Spectrom; 2006 Dec; 17(12):1631-42. PubMed ID: 16935522 [TBL] [Abstract][Full Text] [Related]
8. Gas-phase proton-transfer chemistry coupled with TOF mass spectrometry and ion mobility-MS for the facile analysis of poly(ethylene glycols) and PEGylated polypeptide conjugates. Bagal D; Zhang H; Schnier PD Anal Chem; 2008 Apr; 80(7):2408-18. PubMed ID: 18324791 [TBL] [Abstract][Full Text] [Related]
9. Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation. Lioe H; Laskin J; Reid GE; O'Hair RA J Phys Chem A; 2007 Oct; 111(42):10580-8. PubMed ID: 17914758 [TBL] [Abstract][Full Text] [Related]
10. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons. Bythell BJ; Suhai S; Somogyi A; Paizs B J Am Chem Soc; 2009 Oct; 131(39):14057-65. PubMed ID: 19746933 [TBL] [Abstract][Full Text] [Related]
11. Gas-phase peptide/protein cationizing agent switching via ion/ion reactions. Newton KA; McLuckey SA J Am Chem Soc; 2003 Oct; 125(41):12404-5. PubMed ID: 14531672 [TBL] [Abstract][Full Text] [Related]
12. Mining a tandem mass spectrometry database to determine the trends and global factors influencing peptide fragmentation. Kapp EA; Schütz F; Reid GE; Eddes JS; Moritz RL; O'Hair RA; Speed TP; Simpson RJ Anal Chem; 2003 Nov; 75(22):6251-64. PubMed ID: 14616009 [TBL] [Abstract][Full Text] [Related]
13. Observation of an unusually facile fragmentation pathway of gas-phase peptide ions: a study on the gas-phase fragmentation mechanism and energetics of tryptic peptides modified with 4-sulfophenyl isothiocyanate (SPITC) and 4-chlorosulfophenyl isocyanate (SPC) and their 18-crown-6 complexes. Shin JW; Lee YH; Hwang S; Lee SW J Mass Spectrom; 2007 Mar; 42(3):380-8. PubMed ID: 17200996 [TBL] [Abstract][Full Text] [Related]
14. Ion trap versus low-energy beam-type collision-induced dissociation of protonated ubiquitin ions. Xia Y; Liang X; McLuckey SA Anal Chem; 2006 Feb; 78(4):1218-27. PubMed ID: 16478115 [TBL] [Abstract][Full Text] [Related]
15. Electron capture dissociation mass spectrometry of peptide cations containing a lysine homologue: a mobile proton model for explaining the observation of b-type product ions. Lee S; Chung G; Kim J; Oh HB Rapid Commun Mass Spectrom; 2006; 20(21):3167-75. PubMed ID: 17016809 [TBL] [Abstract][Full Text] [Related]
16. Tandem electrospray mass spectrometric studies of proton and sodium ion adducts of neutral peptides with modified N- and C-termini: synthetic model peptides and microheterogeneous peptaibol antibiotics. Sabareesh V; Balaram P Rapid Commun Mass Spectrom; 2006; 20(4):618-28. PubMed ID: 16444685 [TBL] [Abstract][Full Text] [Related]
17. Phosphorylation site identification via ion trap tandem mass spectrometry of whole protein and peptide ions: bovine alpha-crystallin A chain. Hogan JM; Pitteri SJ; McLuckey SA Anal Chem; 2003 Dec; 75(23):6509-16. PubMed ID: 14640721 [TBL] [Abstract][Full Text] [Related]
18. Competition of charge- versus radical-directed fragmentation of gas-phase protonated cysteine sulfinyl radicals. Love CB; Tan L; Francisco JS; Xia Y J Am Chem Soc; 2013 Apr; 135(16):6226-33. PubMed ID: 23527556 [TBL] [Abstract][Full Text] [Related]
19. Selective identification and quantitative analysis of methionine containing peptides by charge derivatization and tandem mass spectrometry. Reid GE; Roberts KD; Simpson RJ; O'Hair RA J Am Soc Mass Spectrom; 2005 Jul; 16(7):1131-50. PubMed ID: 15923125 [TBL] [Abstract][Full Text] [Related]
20. Peptide derivatization as a strategy to form fixed-charge peptide radicals. Karnezis A; Barlow CK; O'Hair RA; McFadyen WD Rapid Commun Mass Spectrom; 2006; 20(19):2865-70. PubMed ID: 16941727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]