BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 17154426)

  • 1. The influence of grafted polymer architecture and fluid hydrodynamics on protein separation by entropic interaction chromatography.
    Coad BR; Steels BM; Kizhakkedathu JN; Brooks DE; Haynes CA
    Biotechnol Bioeng; 2007 Jun; 97(3):574-87. PubMed ID: 17154426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entropic interaction chromatography: separating proteins on the basis of size using end-grafted polymer brushes.
    Pang P; Koska J; Coad BR; Brooks DE; Haynes CA
    Biotechnol Bioeng; 2005 Apr; 90(1):1-13. PubMed ID: 15706591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of graft densities and chain lengths on separation of bioactive compounds by nanolayered thermoresponsive polymer brush surfaces.
    Nagase K; Kobayashi J; Kikuchi A; Akiyama Y; Kanazawa H; Okano T
    Langmuir; 2008 Jan; 24(2):511-7. PubMed ID: 18085801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma.
    Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE
    Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.
    Nair N; Wentzel N; Jayaraman A
    J Chem Phys; 2011 May; 134(19):194906. PubMed ID: 21599087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion-exchange macroporous hydrophilic gel monolith with grafted polymer brushes.
    Savina IN; Galaev IY; Mattiasson B
    J Mol Recognit; 2006; 19(4):313-21. PubMed ID: 16703569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer brush covalently attached to OH-functionalized mica surface via surface-initiated ATRP: control of grafting density and polymer chain length.
    Lego B; François M; Skene WG; Giasson S
    Langmuir; 2009 May; 25(9):5313-21. PubMed ID: 19256467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of novel size exclusion chromatography support by surface initiated aqueous atom transfer radical polymerization.
    Coad BR; Kizhakkedathu JN; Haynes CA; Brooks DE
    Langmuir; 2007 Nov; 23(23):11791-803. PubMed ID: 17924673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of poly(vinyltetrazole) chain-grafted poly(glycidymethacrylate-co-ethylenedimethacrylate) beads by surface-initiated atom transfer radical polymerization for the use in weak cation exchange and hydrophilic interaction chromatography.
    Hao J; Wang F; Dai X; Gong B; Wei Y
    Talanta; 2011 Jul; 85(1):482-7. PubMed ID: 21645729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High stability of thermoresponsive polymer-brush-grafted silica beads as chromatography matrices.
    Nagase K; Kobayashi J; Kikuchi A; Akiyama Y; Kanazawa H; Okano T
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):1998-2008. PubMed ID: 22452297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of surface grafted polymers on the adsorption of different model proteins.
    Jönsson M; Johansson HO
    Colloids Surf B Biointerfaces; 2004 Sep; 37(3-4):71-81. PubMed ID: 15342016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermo-responsive polymer brush-grafted porous polystyrene beads for all-aqueous chromatography.
    Mizutani A; Nagase K; Kikuchi A; Kanazawa H; Akiyama Y; Kobayashi J; Annaka M; Okano T
    J Chromatogr A; 2010 Jan; 1217(4):522-9. PubMed ID: 20015506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of protein adsorption on well-characterized polymer brush layers with varying chemical structures.
    Inoue Y; Ishihara K
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):350-7. PubMed ID: 20705439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of electric field on the partitioning behavior of solutes in entropic interaction chromatography.
    Shi QH; Jia GD; Xu L; Sun Y
    J Sep Sci; 2013 Sep; 36(18):3075-85. PubMed ID: 23857725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-responsive chromatography for the separation of biomolecules.
    Kanazawa H; Okano T
    J Chromatogr A; 2011 Dec; 1218(49):8738-47. PubMed ID: 21570080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effect of hydrophilic polymer brushes on surface-induced platelet activation and adhesion.
    Zou Y; Lai BF; Kizhakkedathu JN; Brooks DE
    Macromol Biosci; 2010 Dec; 10(12):1432-43. PubMed ID: 20954202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of hydrophilic polymer-grafted polystyrene beads for hydrophilic interaction chromatography via surface-initiated atom transfer radical polymerization.
    Dai X; He Y; Wei Y; Gong B
    J Sep Sci; 2011 Nov; 34(22):3115-22. PubMed ID: 21972137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of polymer nanolayer architecture on the separation performance of anion-exchange membrane adsorbers: I. Protein separations.
    Bhut BV; Weaver J; Carter AR; Wickramasinghe SR; Husson SM
    Biotechnol Bioeng; 2011 Nov; 108(11):2645-53. PubMed ID: 21618475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of protein interactions with surface-grafted charged polymers. Correlations between statistical molecular modeling and a mean field approach.
    Johansson HO; Van Alstine JM
    Langmuir; 2006 Oct; 22(21):8920-30. PubMed ID: 17014136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled pore functionalization of poly(ethylene terephthalate) track-etched membranes via surface-initiated atom transfer radical polymerization.
    Friebe A; Ulbricht M
    Langmuir; 2007 Sep; 23(20):10316-22. PubMed ID: 17764201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.