BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17154432)

  • 1. Phosphate recognition in structural biology.
    Hirsch AK; Fischer FR; Diederich F
    Angew Chem Int Ed Engl; 2007; 46(3):338-52. PubMed ID: 17154432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Docking interactions in protein kinase and phosphatase networks.
    Reményi A; Good MC; Lim WA
    Curr Opin Struct Biol; 2006 Dec; 16(6):676-85. PubMed ID: 17079133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural analysis of the protein phosphatase 1 docking motif: molecular description of binding specificities identifies interacting proteins.
    Meiselbach H; Sticht H; Enz R
    Chem Biol; 2006 Jan; 13(1):49-59. PubMed ID: 16426971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structural analysis of phosphate and sulphate binding sites in proteins. Estimation of propensities for binding and conservation of phosphate binding sites.
    Copley RR; Barton GJ
    J Mol Biol; 1994 Sep; 242(4):321-9. PubMed ID: 7932692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthogonal multipolar interactions in structural chemistry and biology.
    Paulini R; Müller K; Diederich F
    Angew Chem Int Ed Engl; 2005 Mar; 44(12):1788-805. PubMed ID: 15706577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidation of the phosphate binding mode of DING proteins revealed by subangstrom X-ray crystallography.
    Liebschner D; Elias M; Moniot S; Fournier B; Scott K; Jelsch C; Guillot B; Lecomte C; Chabrière E
    J Am Chem Soc; 2009 Jun; 131(22):7879-86. PubMed ID: 19445459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel CalphaNN structural motif for protein recognition of phosphate ions.
    Denessiouk KA; Johnson MS; Denesyuk AI
    J Mol Biol; 2005 Jan; 345(3):611-29. PubMed ID: 15581902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positively charged residues in DNA-binding domains of structural proteins follow sequence-specific positions of DNA phosphate groups.
    Cherstvy AG
    J Phys Chem B; 2009 Apr; 113(13):4242-7. PubMed ID: 19256532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidation of characteristic structural features of ligand binding sites of protein kinases: a neural network approach.
    Niwa T
    J Chem Inf Model; 2006; 46(5):2158-66. PubMed ID: 16995746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis of the PP2C phosphatase tPphA from Thermosynechococcus elongatus: a flexible flap subdomain controls access to the catalytic site.
    Schlicker C; Fokina O; Kloft N; Grüne T; Becker S; Sheldrick GM; Forchhammer K
    J Mol Biol; 2008 Feb; 376(2):570-81. PubMed ID: 18164312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-RNA interactions: structural analysis and functional classes.
    Ellis JJ; Broom M; Jones S
    Proteins; 2007 Mar; 66(4):903-11. PubMed ID: 17186525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the structural basis of substrate recognition by histidinol-phosphate aminotransferase from Corynebacterium glutamicum.
    Marienhagen J; Sandalova T; Sahm H; Eggeling L; Schneider G
    Acta Crystallogr D Biol Crystallogr; 2008 Jun; 64(Pt 6):675-85. PubMed ID: 18560156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional classification of protein kinase binding sites using Cavbase.
    Kuhn D; Weskamp N; Hüllermeier E; Klebe G
    ChemMedChem; 2007 Oct; 2(10):1432-47. PubMed ID: 17694525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of Paenibacillus polymyxa beta-glucosidase B complexes reveal the molecular basis of substrate specificity and give new insights into the catalytic machinery of family I glycosidases.
    Isorna P; Polaina J; Latorre-García L; Cañada FJ; González B; Sanz-Aparicio J
    J Mol Biol; 2007 Aug; 371(5):1204-18. PubMed ID: 17585934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the ligand-binding protein EhuB from Sinorhizobium meliloti reveals substrate recognition of the compatible solutes ectoine and hydroxyectoine.
    Hanekop N; Höing M; Sohn-Bösser L; Jebbar M; Schmitt L; Bremer E
    J Mol Biol; 2007 Dec; 374(5):1237-50. PubMed ID: 17996893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New opportunities for protease ligand-binding site comparisons using SitesBase.
    Gold ND; Deville K; Jackson RM
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):561-5. PubMed ID: 17511652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propensities of polar and aromatic amino acids in noncanonical interactions: nonbonded contacts analysis of protein-ligand complexes in crystal structures.
    Imai YN; Inoue Y; Yamamoto Y
    J Med Chem; 2007 Mar; 50(6):1189-96. PubMed ID: 17315854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pharmacophore map of small molecule protein kinase inhibitors.
    McGregor MJ
    J Chem Inf Model; 2007; 47(6):2374-82. PubMed ID: 17941626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-substrate interactions revealed by the crystal structures of the archaeal Sulfolobus PTP-fold phosphatase and its phosphopeptide complexes.
    Chu HM; Wang AH
    Proteins; 2007 Mar; 66(4):996-1003. PubMed ID: 17173287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.