These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 17154458)
1. Electrospinning of poly(lactic acid) stereocomplex nanofibers. Tsuji H; Nakano M; Hashimoto M; Takashima K; Katsura S; Mizuno A Biomacromolecules; 2006 Dec; 7(12):3316-20. PubMed ID: 17154458 [TBL] [Abstract][Full Text] [Related]
2. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt. Tsuji H; Tezuka Y Biomacromolecules; 2004; 5(4):1181-6. PubMed ID: 15244428 [TBL] [Abstract][Full Text] [Related]
3. Effect of electron beam irradiation on the structure and properties of electrospun PLLA and PLLA/PDLA blend nanofibers. Zhang X; Kotaki M; Okubayashi S; Sukigara S Acta Biomater; 2010 Jan; 6(1):123-9. PubMed ID: 19508907 [TBL] [Abstract][Full Text] [Related]
4. Enhanced stereocomplex formation of poly(L-lactic acid) and poly(D-lactic acid) in the presence of stereoblock poly(lactic acid). Fukushima K; Chang YH; Kimura Y Macromol Biosci; 2007 Jun; 7(6):829-35. PubMed ID: 17541929 [TBL] [Abstract][Full Text] [Related]
5. Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(L-lactic acid)/poly(D-lactic acid) racemic blends: molecular weight effects. Pan P; Han L; Bao J; Xie Q; Shan G; Bao Y J Phys Chem B; 2015 May; 119(21):6462-70. PubMed ID: 25940864 [TBL] [Abstract][Full Text] [Related]
6. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator. Chang WW; Niu J; Peng H; Rong W Int J Biol Macromol; 2023 Dec; 253(Pt 5):127230. PubMed ID: 37797850 [TBL] [Abstract][Full Text] [Related]
7. Preferential Stereocomplex Crystallization in Enantiomeric Blends of Cellulose Acetate-g-Poly(lactic acid)s with Comblike Topology. Bao J; Han L; Shan G; Bao Y; Pan P J Phys Chem B; 2015 Oct; 119(39):12689-98. PubMed ID: 26352621 [TBL] [Abstract][Full Text] [Related]
8. Molecular weight dependence of the poly(L-lactide)/poly(D-lactide) Stereocomplex at the air-water interface. Duan Y; Liu J; Sato H; Zhang J; Tsuji H; Ozaki Y; Yan S Biomacromolecules; 2006 Oct; 7(10):2728-35. PubMed ID: 17025346 [TBL] [Abstract][Full Text] [Related]
9. Fabrication and Properties of a Biomimetic Dura Matter Substitute Based on Stereocomplex Poly(Lactic Acid) Nanofibers. Chuan D; Wang Y; Fan R; Zhou L; Chen H; Xu J; Guo G Int J Nanomedicine; 2020; 15():3729-3740. PubMed ID: 32547025 [TBL] [Abstract][Full Text] [Related]
10. Amphiphilic poly(D- or L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) block copolymers: controlled synthesis, characterization, and stereocomplex formation. Spasova M; Mespouille L; Coulembier O; Paneva D; Manolova N; Rashkov I; Dubois P Biomacromolecules; 2009 May; 10(5):1217-23. PubMed ID: 19331403 [TBL] [Abstract][Full Text] [Related]
11. Promoted formation of stereocomplex in enantiomeric poly(lactic acid)s induced by cellulose nanofibers. Ren Q; Wu M; Weng Z; Zhu X; Li W; Huang P; Wang L; Zheng W; Ohshima M Carbohydr Polym; 2022 Jan; 276():118800. PubMed ID: 34823806 [TBL] [Abstract][Full Text] [Related]
12. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films. Tsuji H Biomaterials; 2003 Feb; 24(4):537-47. PubMed ID: 12437948 [TBL] [Abstract][Full Text] [Related]
13. Coaxially electrospun core/shell structured poly(L-lactide) acid/chitosan nanofibers for potential drug carrier in tissue engineering. Ji X; Yang W; Wang T; Mao C; Guo L; Xiao J; He N J Biomed Nanotechnol; 2013 Oct; 9(10):1672-8. PubMed ID: 24015496 [TBL] [Abstract][Full Text] [Related]
14. Stereo-complex crystallization of poly(lactic acid)s in block-copolymer phase separation. Uehara H; Karaki Y; Wada S; Yamanobe T ACS Appl Mater Interfaces; 2010 Oct; 2(10):2707-10. PubMed ID: 20836564 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of high-performance poly(l-lactic acid)/lignin-graft-poly(d-lactic acid) stereocomplex films. Liu R; Dai L; Hu LQ; Zhou WQ; Si CL Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():397-403. PubMed ID: 28866180 [TBL] [Abstract][Full Text] [Related]
17. Stereocomplex formation by enantiomeric poly(lactic acid) graft-type phospholipid polymers for tissue engineering. Watanabe J; Eriguchi T; Ishihara K Biomacromolecules; 2002; 3(5):1109-14. PubMed ID: 12217060 [TBL] [Abstract][Full Text] [Related]
18. Polymorphism of racemic poly(L-lactide)/poly(D-lactide) blend: effect of melt and cold crystallization. Bao RY; Yang W; Jiang WR; Liu ZY; Xie BH; Yang MB J Phys Chem B; 2013 Apr; 117(13):3667-74. PubMed ID: 23477609 [TBL] [Abstract][Full Text] [Related]
19. Relationship between the Stereocomplex Crystallization Behavior and Mechanical Properties of PLLA/PDLA Blends. Park HS; Hong CK Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34199577 [TBL] [Abstract][Full Text] [Related]
20. Structure Mediation and Properties of Poly( Yang B; Wang R; Ma HL; Li X; BrĂ¼nig H; Dong Z; Qi Y; Zhang X Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]