BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 17154463)

  • 1. Monodispersed glucose-responsive microgels operating at physiological salinity.
    Lapeyre V; Gosse I; Chevreux S; Ravaine V
    Biomacromolecules; 2006 Dec; 7(12):3356-63. PubMed ID: 17154463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designed glucose-responsive microgels with selective shrinking behavior.
    Ancla C; Lapeyre V; Gosse I; Catargi B; Ravaine V
    Langmuir; 2011 Oct; 27(20):12693-701. PubMed ID: 21892832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiresponsive hybrid microgels and hollow capsules with a layered structure.
    Lapeyre V; Renaudie N; Dechezelles JF; Saadaoui H; Ravaine S; Ravaine V
    Langmuir; 2009 Apr; 25(8):4659-67. PubMed ID: 19281153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and volume phase transitions of glucose-sensitive microgels.
    Zhang Y; Guan Y; Zhou S
    Biomacromolecules; 2006 Nov; 7(11):3196-201. PubMed ID: 17096551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH.
    Matsumoto A; Yoshida R; Kataoka K
    Biomacromolecules; 2004; 5(3):1038-45. PubMed ID: 15132698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-controlled release of diols from N-isopropylacrylamide-co-acrylamidophenylboronic acid microgels.
    Ge H; Ding Y; Ma C; Zhang G
    J Phys Chem B; 2006 Oct; 110(41):20635-9. PubMed ID: 17034253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A totally synthetic glucose responsive gel operating in physiological aqueous conditions.
    Matsumoto A; Yamamoto K; Yoshida R; Kataoka K; Aoyagi T; Miyahara Y
    Chem Commun (Camb); 2010 Apr; 46(13):2203-5. PubMed ID: 20234906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Permeability control of glucose-sensitive nanoshells.
    Zhang Y; Guan Y; Zhou S
    Biomacromolecules; 2007 Dec; 8(12):3842-7. PubMed ID: 18020392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response.
    Lee YJ; Pruzinsky SA; Braun PV
    Langmuir; 2004 Apr; 20(8):3096-106. PubMed ID: 15875835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge-switching, amphoteric glucose-responsive microgels with physiological swelling activity.
    Hoare T; Pelton R
    Biomacromolecules; 2008 Feb; 9(2):733-40. PubMed ID: 18198833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-pH sensitivity of bovine serum albumin protein-microgels based on cross-linked poly(N-isopropylacrylamide-co-acrylic acid).
    Huo D; Li Y; Qian Q; Kobayashi T
    Colloids Surf B Biointerfaces; 2006 Jun; 50(1):36-42. PubMed ID: 16698239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose-responsive microgels with a core-shell structure.
    Lapeyre V; Ancla C; Catargi B; Ravaine V
    J Colloid Interface Sci; 2008 Nov; 327(2):316-23. PubMed ID: 18804779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin semitransparent gels containing phenylboronic acid: porosity, optical response and permeability for sugars.
    Ivanov AE; Thammakhet C; Kuzimenkova MV; Thavarungkul P; Kanatharana P; Mikhalovska LI; Mikhalovsky SV; Galaev IY; Mattiasson B
    J Mol Recognit; 2008; 21(2):89-95. PubMed ID: 18383100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of optical glucose nanobiosensor with high sensitivity and selectivity at physiological pH on the basis of organic-inorganic hybrid microgels.
    Wu W; Zhou T; Aiello M; Zhou S
    Biosens Bioelectron; 2010 Aug; 25(12):2603-10. PubMed ID: 20471821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of pH-responsive microgels containing methacrylic acid: effects of particle composition and added calcium.
    Dalmont H; Pinprayoon O; Saunders BR
    Langmuir; 2008 Mar; 24(6):2834-40. PubMed ID: 18290684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and aqueous solution properties of sterically stabilized pH-responsive polyampholyte microgels.
    Tan BH; Ravi P; Tan LN; Tam KC
    J Colloid Interface Sci; 2007 May; 309(2):453-63. PubMed ID: 17307196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(vinylpyridine) core/poly(N-isopropylacrylamide) shell microgel particles: their characterization and the uptake and release of an anionic surfactant.
    Bradley M; Vincent B
    Langmuir; 2008 Mar; 24(6):2421-5. PubMed ID: 18294014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-, thermally, and pH-responsive microgels.
    Garcia A; Marquez M; Cai T; Rosario R; Hu Z; Gust D; Hayes M; Vail SA; Park CD
    Langmuir; 2007 Jan; 23(1):224-9. PubMed ID: 17190508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions.
    Matsumoto A; Ikeda S; Harada A; Kataoka K
    Biomacromolecules; 2003; 4(5):1410-6. PubMed ID: 12959613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of novel cationic pH-responsive poly(N,N'-dimethylamino ethyl methacrylate) microgels.
    Hu L; Chu LY; Yang M; Wang HD; Hui Niu C
    J Colloid Interface Sci; 2007 Jul; 311(1):110-7. PubMed ID: 17397857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.