BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 17154550)

  • 1. Metal-catalyzed oxidation of protein-bound dopamine.
    Akagawa M; Ishii Y; Ishii T; Shibata T; Yotsu-Yamashita M; Suyama K; Uchida K
    Biochemistry; 2006 Dec; 45(50):15120-8. PubMed ID: 17154550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron- and manganese-catalyzed autoxidation of dopamine in the presence of L-cysteine: possible insights into iron- and manganese-mediated dopaminergic neurotoxicity.
    Shen XM; Dryhurst G
    Chem Res Toxicol; 1998 Jul; 11(7):824-37. PubMed ID: 9671546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myoglobin modification by enzyme-generated dopamine reactive species.
    Nicolis S; Zucchelli M; Monzani E; Casella L
    Chemistry; 2008; 14(28):8661-73. PubMed ID: 18688822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further insights into the influence of L-cysteine on the oxidation chemistry of dopamine: reaction pathways of potential relevance to Parkinson's disease.
    Shen XM; Dryhurst G
    Chem Res Toxicol; 1996 Jun; 9(4):751-63. PubMed ID: 8831820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of cysteine and homocysteine by bovine albumin.
    Gabaldon M
    Arch Biochem Biophys; 2004 Nov; 431(2):178-88. PubMed ID: 15488466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the mechanism of oxidative modification of human glyceraldehyde-3-phosphate dehydrogenase by glutathione: catalysis by glutaredoxin.
    Lind C; Gerdes R; Schuppe-Koistinen I; Cotgreave IA
    Biochem Biophys Res Commun; 1998 Jun; 247(2):481-6. PubMed ID: 9642155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of proteinaceous cysteine residues by dopamine-derived H2O2 in PC12 cells.
    Kim JR; Kwon KS; Yoon HW; Lee SR; Rhee SG
    Arch Biochem Biophys; 2002 Jan; 397(2):414-23. PubMed ID: 11795902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein hydroperoxides and carbonyl groups generated by porphyrin-induced photo-oxidation of bovine serum albumin.
    Silvester JA; Timmins GS; Davies MJ
    Arch Biochem Biophys; 1998 Feb; 350(2):249-58. PubMed ID: 9473299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiolation of protein-bound carcinogenic aldehyde. An electrophilic acrolein-lysine adduct that covalently binds to thiols.
    Furuhata A; Nakamura M; Osawa T; Uchida K
    J Biol Chem; 2002 Aug; 277(31):27919-26. PubMed ID: 12032148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions.
    Hwang NR; Yim SH; Kim YM; Jeong J; Song EJ; Lee Y; Lee JH; Choi S; Lee KJ
    Biochem J; 2009 Sep; 423(2):253-64. PubMed ID: 19650766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation.
    Zaffagnini M; Michelet L; Marchand C; Sparla F; Decottignies P; Le Maréchal P; Miginiac-Maslow M; Noctor G; Trost P; Lemaire SD
    FEBS J; 2007 Jan; 274(1):212-26. PubMed ID: 17140414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of bovine serum albumin: identification of oxidation products and structural modifications.
    Guedes S; Vitorino R; Domingues R; Amado F; Domingues P
    Rapid Commun Mass Spectrom; 2009 Aug; 23(15):2307-15. PubMed ID: 19575405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of dopamine in the presence of cysteine: characterization of new toxic products.
    Shen XM; Zhang F; Dryhurst G
    Chem Res Toxicol; 1997 Feb; 10(2):147-55. PubMed ID: 9049425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of copper with cysteine: stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidation.
    Rigo A; Corazza A; di Paolo ML; Rossetto M; Ugolini R; Scarpa M
    J Inorg Biochem; 2004 Sep; 98(9):1495-501. PubMed ID: 15337601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of lysine to N(epsilon)-(carboxymethyl)lysine increases susceptibility of proteins to metal-catalyzed oxidation.
    Requena JR; Stadtman ER
    Biochem Biophys Res Commun; 1999 Oct; 264(1):207-11. PubMed ID: 10527866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress triggers thiol oxidation in the glyceraldehyde-3-phosphate dehydrogenase of Staphylococcus aureus.
    Weber H; Engelmann S; Becher D; Hecker M
    Mol Microbiol; 2004 Apr; 52(1):133-40. PubMed ID: 15049816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae.
    Shenton D; Grant CM
    Biochem J; 2003 Sep; 374(Pt 2):513-9. PubMed ID: 12755685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic evidence that cysteine reacts with dopaminoquinone via reversible adduct formation to yield 5-cysteinyl-dopamine: an important precursor of neuromelanin.
    Jameson GN; Zhang J; Jameson RF; Linert W
    Org Biomol Chem; 2004 Mar; 2(5):777-82. PubMed ID: 14985818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomics approaches to study the redox state of cysteine-containing proteins.
    Camerini S; Polci ML; Bachi A
    Ann Ist Super Sanita; 2005; 41(4):451-7. PubMed ID: 16569913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.