These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 17154609)
1. Monte Carlo study of the topographic effects on the proton binding at the energetically heterogeneous metal oxide/electrolyte interface. Zarzycki P Langmuir; 2006 Dec; 22(26):11234-40. PubMed ID: 17154609 [TBL] [Abstract][Full Text] [Related]
2. Monte Carlo modeling of ion adsorption at the energetically heterogeneous metal oxide/electrolyte interface: Micro- and macroscopic correlations between adsorption energies. Zarzycki P J Colloid Interface Sci; 2007 Feb; 306(2):328-36. PubMed ID: 17125782 [TBL] [Abstract][Full Text] [Related]
3. Effective adsorption energy distribution function as a new mean-field characteristic of surface heterogeneity in adsorption systems with lateral interactions. Zarzycki P J Colloid Interface Sci; 2007 Jul; 311(2):622-7. PubMed ID: 17449056 [TBL] [Abstract][Full Text] [Related]
4. Study of proton adsorption at heterogeneous oxide/electrolyte interface. Prediction of the surface potential using Monte Carlo simulations and 1-pK approach. Zarzycki P; Charmas R; Szabelski P J Comput Chem; 2004 Apr; 25(5):704-11. PubMed ID: 14978713 [TBL] [Abstract][Full Text] [Related]
5. Modeling of binary adsorption on heterogeneous surfaces characterized by a quasi-gaussian adsorption energy distribution. Nieszporek K; Szabelski P; Drach M Langmuir; 2005 Aug; 21(16):7335-41. PubMed ID: 16042463 [TBL] [Abstract][Full Text] [Related]
6. Kinetic Monte Carlo study of proton binding at the metal oxide/electrolyte interface. Zarzycki P J Colloid Interface Sci; 2007 Nov; 315(1):54-62. PubMed ID: 17719059 [TBL] [Abstract][Full Text] [Related]
7. Role of the surface heterogeneity in adsorption of hydrogen ions on metal oxides: theory and simulations. Zarzycki P; Szabelski P; Charmas R J Comput Chem; 2005 Jul; 26(10):1079-88. PubMed ID: 15898108 [TBL] [Abstract][Full Text] [Related]
8. Grand canonical Monte Carlo simulation study on the catenation effect on hydrogen adsorption onto the interpenetrating metal-organic frameworks. Jung DH; Kim D; Lee TB; Choi SB; Yoon JH; Kim J; Choi K; Choi SH J Phys Chem B; 2006 Nov; 110(46):22987-90. PubMed ID: 17107133 [TBL] [Abstract][Full Text] [Related]
9. Nonlinear response of the surface electrostatic potential formed at metal oxide/electrolyte interfaces. A Monte Carlo simulation study. Zarzycki P; Rosso KM J Colloid Interface Sci; 2010 Jan; 341(1):143-52. PubMed ID: 19836754 [TBL] [Abstract][Full Text] [Related]
10. Hydrogen adsorption on nickel (100) single-crystal face. A Monte Carlo study of the equilibrium and kinetics. Panczyk T; Szabelski P; Rudzinski W J Phys Chem B; 2005 Jun; 109(21):10986-94. PubMed ID: 16852339 [TBL] [Abstract][Full Text] [Related]
11. Application of the Replica Ornstein-Zernike Equations to Study Submonolayer Adsorption on Energetically Heterogeneous Surfaces. Rzysko W; Pizio O; Sokolowski S; Sokolowska Z J Colloid Interface Sci; 1999 Nov; 219(1):184-189. PubMed ID: 10527586 [TBL] [Abstract][Full Text] [Related]
12. Effects of surface site distribution and dielectric discontinuity on the charging behavior of nanoparticles: a grand canonical Monte Carlo study. Seijo M; Ulrich S; Filella M; Buffle J; Stoll S Phys Chem Chem Phys; 2006 Dec; 8(48):5679-88. PubMed ID: 17149489 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the adsorption behaviour of acetone at the surface of ice. A grand canonical Monte Carlo simulation study. Hantal G; Jedlovszky P; Hoang PN; Picaud S Phys Chem Chem Phys; 2008 Nov; 10(42):6369-80. PubMed ID: 18972025 [TBL] [Abstract][Full Text] [Related]
14. Monte Carlo simulations of the adsorption of CO2 on the MgO(100) surface. Daub CD; Patey GN; Jack DB; Sallabi AK J Chem Phys; 2006 Mar; 124(11):114706. PubMed ID: 16555909 [TBL] [Abstract][Full Text] [Related]
15. A Monte Carlo study of proton adsorption at the heterogeneous oxide/electrolyte interface. Szabelski P; Zarzycki P; Charmas R Langmuir; 2004 Feb; 20(3):997-1002. PubMed ID: 15773136 [TBL] [Abstract][Full Text] [Related]
16. Grand potential, helmholtz free energy, and entropy calculation in heterogeneous cylindrical pores by the grand canonical Monte Carlo simulation method. Puibasset J J Phys Chem B; 2005 Jan; 109(1):480-7. PubMed ID: 16851039 [TBL] [Abstract][Full Text] [Related]
17. Monte Carlo simulations of Lennard-Jones nonionic surfactant adsorption at the liquid/vapor interface. Howes AJ; Radke CJ Langmuir; 2007 Feb; 23(4):1835-44. PubMed ID: 17279664 [TBL] [Abstract][Full Text] [Related]
18. Grand canonical Monte Carlo simulation of the adsorption isotherms of water molecules on model soot particles. Moulin F; Picaud S; Hoang PN; Jedlovszky P J Chem Phys; 2007 Oct; 127(16):164719. PubMed ID: 17979383 [TBL] [Abstract][Full Text] [Related]
19. Origin of two time-scale regimes in potentiometric titration of metal oxides. A replica kinetic Monte Carlo study. Zarzycki P; Rosso KM Langmuir; 2009 Jun; 25(12):6841-8. PubMed ID: 19425599 [TBL] [Abstract][Full Text] [Related]
20. Modeling the surface charge evolution of spherical nanoparticles by considering dielectric discontinuity effects at the solid/electrolyte solution interface. Seijo M; Ulrich S; Filella M; Buffle J; Stoll S J Colloid Interface Sci; 2008 Jun; 322(2):660-8. PubMed ID: 18387618 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]