BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17154609)

  • 1. Monte Carlo study of the topographic effects on the proton binding at the energetically heterogeneous metal oxide/electrolyte interface.
    Zarzycki P
    Langmuir; 2006 Dec; 22(26):11234-40. PubMed ID: 17154609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo modeling of ion adsorption at the energetically heterogeneous metal oxide/electrolyte interface: Micro- and macroscopic correlations between adsorption energies.
    Zarzycki P
    J Colloid Interface Sci; 2007 Feb; 306(2):328-36. PubMed ID: 17125782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective adsorption energy distribution function as a new mean-field characteristic of surface heterogeneity in adsorption systems with lateral interactions.
    Zarzycki P
    J Colloid Interface Sci; 2007 Jul; 311(2):622-7. PubMed ID: 17449056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of proton adsorption at heterogeneous oxide/electrolyte interface. Prediction of the surface potential using Monte Carlo simulations and 1-pK approach.
    Zarzycki P; Charmas R; Szabelski P
    J Comput Chem; 2004 Apr; 25(5):704-11. PubMed ID: 14978713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of binary adsorption on heterogeneous surfaces characterized by a quasi-gaussian adsorption energy distribution.
    Nieszporek K; Szabelski P; Drach M
    Langmuir; 2005 Aug; 21(16):7335-41. PubMed ID: 16042463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic Monte Carlo study of proton binding at the metal oxide/electrolyte interface.
    Zarzycki P
    J Colloid Interface Sci; 2007 Nov; 315(1):54-62. PubMed ID: 17719059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the surface heterogeneity in adsorption of hydrogen ions on metal oxides: theory and simulations.
    Zarzycki P; Szabelski P; Charmas R
    J Comput Chem; 2005 Jul; 26(10):1079-88. PubMed ID: 15898108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grand canonical Monte Carlo simulation study on the catenation effect on hydrogen adsorption onto the interpenetrating metal-organic frameworks.
    Jung DH; Kim D; Lee TB; Choi SB; Yoon JH; Kim J; Choi K; Choi SH
    J Phys Chem B; 2006 Nov; 110(46):22987-90. PubMed ID: 17107133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear response of the surface electrostatic potential formed at metal oxide/electrolyte interfaces. A Monte Carlo simulation study.
    Zarzycki P; Rosso KM
    J Colloid Interface Sci; 2010 Jan; 341(1):143-52. PubMed ID: 19836754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen adsorption on nickel (100) single-crystal face. A Monte Carlo study of the equilibrium and kinetics.
    Panczyk T; Szabelski P; Rudzinski W
    J Phys Chem B; 2005 Jun; 109(21):10986-94. PubMed ID: 16852339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the Replica Ornstein-Zernike Equations to Study Submonolayer Adsorption on Energetically Heterogeneous Surfaces.
    Rzysko W; Pizio O; Sokolowski S; Sokolowska Z
    J Colloid Interface Sci; 1999 Nov; 219(1):184-189. PubMed ID: 10527586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of surface site distribution and dielectric discontinuity on the charging behavior of nanoparticles: a grand canonical Monte Carlo study.
    Seijo M; Ulrich S; Filella M; Buffle J; Stoll S
    Phys Chem Chem Phys; 2006 Dec; 8(48):5679-88. PubMed ID: 17149489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the adsorption behaviour of acetone at the surface of ice. A grand canonical Monte Carlo simulation study.
    Hantal G; Jedlovszky P; Hoang PN; Picaud S
    Phys Chem Chem Phys; 2008 Nov; 10(42):6369-80. PubMed ID: 18972025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulations of the adsorption of CO2 on the MgO(100) surface.
    Daub CD; Patey GN; Jack DB; Sallabi AK
    J Chem Phys; 2006 Mar; 124(11):114706. PubMed ID: 16555909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Monte Carlo study of proton adsorption at the heterogeneous oxide/electrolyte interface.
    Szabelski P; Zarzycki P; Charmas R
    Langmuir; 2004 Feb; 20(3):997-1002. PubMed ID: 15773136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grand potential, helmholtz free energy, and entropy calculation in heterogeneous cylindrical pores by the grand canonical Monte Carlo simulation method.
    Puibasset J
    J Phys Chem B; 2005 Jan; 109(1):480-7. PubMed ID: 16851039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulations of Lennard-Jones nonionic surfactant adsorption at the liquid/vapor interface.
    Howes AJ; Radke CJ
    Langmuir; 2007 Feb; 23(4):1835-44. PubMed ID: 17279664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grand canonical Monte Carlo simulation of the adsorption isotherms of water molecules on model soot particles.
    Moulin F; Picaud S; Hoang PN; Jedlovszky P
    J Chem Phys; 2007 Oct; 127(16):164719. PubMed ID: 17979383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of two time-scale regimes in potentiometric titration of metal oxides. A replica kinetic Monte Carlo study.
    Zarzycki P; Rosso KM
    Langmuir; 2009 Jun; 25(12):6841-8. PubMed ID: 19425599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the surface charge evolution of spherical nanoparticles by considering dielectric discontinuity effects at the solid/electrolyte solution interface.
    Seijo M; Ulrich S; Filella M; Buffle J; Stoll S
    J Colloid Interface Sci; 2008 Jun; 322(2):660-8. PubMed ID: 18387618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.