These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17154609)

  • 21. Computer simulation of the adsorption of light gases in covalent organic frameworks.
    Garberoglio G
    Langmuir; 2007 Nov; 23(24):12154-8. PubMed ID: 17956137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analogy in the adsorption of random copolymers and homopolymers at solid-liquid interface: a Monte Carlo simulation study.
    Sun L; Peng C; Liu H; Hu Y; Jiang J
    J Chem Phys; 2007 Mar; 126(9):094905. PubMed ID: 17362125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monte Carlo simulation of the electrical differential capacitance of a double electrical layer formed at the heterogeneous metal oxide/electrolyte interface.
    Zarzycki P
    J Colloid Interface Sci; 2006 May; 297(1):204-14. PubMed ID: 16325839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scaling behavior of adsorption on patchwise bivariate surfaces revisited.
    Bulnes F; Ramirez-Pastor AJ; Zgrablich G
    Langmuir; 2007 Jan; 23(3):1264-9. PubMed ID: 17241043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics of metal ions adsorption at heterogeneous solid/solution interfaces: A theoretical treatment based on statistical rate theory.
    Rudzinski W; Plazinski W
    J Colloid Interface Sci; 2008 Nov; 327(1):36-43. PubMed ID: 18760418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at 77 K. Classical versus path-integral Monte Carlo simulations.
    Kowalczyk P; Gauden PA; Terzyk AP; Bhatia SK
    Langmuir; 2007 Mar; 23(7):3666-72. PubMed ID: 17323981
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How realistic is the pore size distribution calculated from adsorption isotherms if activated carbon is composed of fullerene-like fragments?
    Terzyk AP; Furmaniak S; Harris PJ; Gauden PA; Włoch J; Kowalczyk P; Rychlicki G
    Phys Chem Chem Phys; 2007 Nov; 9(44):5919-27. PubMed ID: 17989800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular simulations of water and paracresol in MFI zeolite--a Monte Carlo study.
    Narasimhan L; Boulet P; Kuchta B; Schaef O; Denoyel R; Brunet P
    Langmuir; 2009 Oct; 25(19):11598-607. PubMed ID: 19711959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of the adsorption isotherm of methanol on the surface of ice. An experimental and grand canonical Monte Carlo simulation study.
    Jedlovszky P; Pártay L; Hoang PN; Picaud S; von Hessberg P; Crowley JN
    J Am Chem Soc; 2006 Nov; 128(47):15300-9. PubMed ID: 17117883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How to distinguish energetic surface heterogeneity from electrostatic interactions in the case of hydrogen ion adsorption from solution onto oxides.
    Piasecki W
    Langmuir; 2006 Aug; 22(16):6761-3. PubMed ID: 16863219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monte Carlo simulation of n-alkane adsorption isotherms in carbon slit pores.
    Severson BL; Snurr RQ
    J Chem Phys; 2007 Apr; 126(13):134708. PubMed ID: 17430057
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A simple model for studying multilayer adsorption of noninteracting polyatomic species on homogeneous and heterogeneous surfaces.
    Sánchez-Varretti FO; García GD; Ramirez-Pastor AJ; Romá F
    J Chem Phys; 2009 May; 130(19):194711. PubMed ID: 19466859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preferred hydrogen adsorption sites in various MOFs--a comparative computational study.
    Fischer M; Hoffmann F; Fröba M
    Chemphyschem; 2009 Oct; 10(15):2647-57. PubMed ID: 19768717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monte Carlo modeling of chiral adsorption on nanostructured chiral surfaces and slit pores.
    Szabelski P; Panczyk T; Drach M
    Langmuir; 2008 Nov; 24(22):12972-80. PubMed ID: 18942862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of the parameters for the 1-pK triple-layer model of ion adsorption onto oxides from known parameter values for the 2-pK TLM.
    Piasecki W
    J Colloid Interface Sci; 2006 Oct; 302(2):389-95. PubMed ID: 16904684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption mechanism of carbon dioxide in faujasites: grand canonical monte carlo simulations and microcalorimetry measurements.
    Maurin G; Llewellyn PL; Bell RG
    J Phys Chem B; 2005 Aug; 109(33):16084-91. PubMed ID: 16853044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A computational study of electrolyte adsorption in a simple model for intercalated clays.
    Lomba E; Weis JJ
    J Chem Phys; 2010 Mar; 132(10):104705. PubMed ID: 20232982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boltzmann bias grand canonical Monte Carlo.
    Garberoglio G
    J Chem Phys; 2008 Apr; 128(13):134109. PubMed ID: 18397055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding adsorption and interactions of alkane isomer mixtures in isoreticular metal-organic frameworks.
    Zhang L; Wang Q; Wu T; Liu YC
    Chemistry; 2007; 13(22):6387-96. PubMed ID: 17508381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption and disjoining pressure isotherms of confined polymers using dissipative particle dynamics.
    Goicochea AG
    Langmuir; 2007 Nov; 23(23):11656-63. PubMed ID: 17914849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.