BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 17154682)

  • 1. The deformation of an erythrocyte under the radiation pressure by optical stretch.
    Liu YP; Li C; Liu KK; Lai AC
    J Biomech Eng; 2006 Dec; 128(6):830-6. PubMed ID: 17154682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlations between the experimental and numerical investigations on the mechanical properties of erythrocyte by laser stretching.
    Li C; Liu YP; Liu KK; Lai AK
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):80-90. PubMed ID: 18334458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N; Bransky A; Dinnar U
    J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The deformation behavior of multiple red blood cells in a capillary vessel.
    Gong X; Sugiyama K; Takagi S; Matsumoto Y
    J Biomech Eng; 2009 Jul; 131(7):074504. PubMed ID: 19640140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of neutrophil deformation and transport in capillaries using newtonian and viscoelastic drop models.
    Zhou C; Yue P; Feng JJ
    Ann Biomed Eng; 2007 May; 35(5):766-80. PubMed ID: 17380390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of local strain on cell membrane at initiation point of calcium signaling response to applied mechanical stimulus in osteoblastic cells.
    Sato K; Adachi T; Ueda D; Hojo M; Tomita Y
    J Biomech; 2007; 40(6):1246-55. PubMed ID: 16887125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane voltage induced on altered erythrocyte shapes exposed to RF fields.
    Muñoz S; Sebastián JL; Sancho M; Miranda JM
    Bioelectromagnetics; 2004 Dec; 25(8):631-3. PubMed ID: 15515030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical modeling of red blood cells during optical stretching.
    Tan Y; Sun D; Huang W
    J Biomech Eng; 2010 Apr; 132(4):044504. PubMed ID: 20387977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of the human red blood cell membrane at -15 degrees C.
    Thom F
    Cryobiology; 2009 Aug; 59(1):24-7. PubMed ID: 19362084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamics of confined membranes.
    Gov N; Zilman AG; Safran S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011104. PubMed ID: 15324039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers.
    Tan Y; Sun D; Wang J; Huang W
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1816-25. PubMed ID: 20176536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical modeling of biological cells in microinjection.
    Tan Y; Sun D; Huang W; Cheng SH
    IEEE Trans Nanobioscience; 2008 Dec; 7(4):257-66. PubMed ID: 19203869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of the flow-induced deformation of red blood cells.
    Pozrikidis C
    Ann Biomed Eng; 2003 Nov; 31(10):1194-205. PubMed ID: 14649493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of the alterations of membrane shear elastic modulus and viscosity on the deformation and orientation of RBCs].
    Xie L; Yang H; Yao W; Liu D; Zeng Z; Ka W; Sun D; Wen Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):218-22, 226. PubMed ID: 11450538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The stress-free shape of the red blood cell membrane.
    Fischer TM; Haest CW; Stöhr-Liesen M; Schmid-Schönbein H; Skalak R
    Biophys J; 1981 Jun; 34(3):409-22. PubMed ID: 7248469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of cell Young's modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion.
    Kamgoué A; Ohayon J; Tracqui P
    J Biomech Eng; 2007 Aug; 129(4):523-30. PubMed ID: 17655473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic deformation of red blood cell in dual-trap optical tweezers.
    Rancourt-Grenier S; Wei MT; Bai JJ; Chiou A; Bareil PP; Duval PL; Sheng Y
    Opt Express; 2010 May; 18(10):10462-72. PubMed ID: 20588900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human red blood cells deformed under thermal fluid flow.
    Foo JJ; Chan V; Feng ZQ; Liu KK
    Biomed Mater; 2006 Mar; 1(1):1-7. PubMed ID: 18458379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormalities in the membrane material properties of hereditary spherocytes.
    Waugh RE; La Celle PL
    J Biomech Eng; 1980 Aug; 102(3):240. PubMed ID: 19530807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.