BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17155097)

  • 1. Impedance analysis of cultured cells: a mean-field electrical response model for electric cell-substrate impedance sensing technique.
    Urdapilleta E; Bellotti M; Bonetto FJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041908. PubMed ID: 17155097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bipolar resistivity profiling of 3D tissue culture.
    Linderholm P; Vannod J; Barrandon Y; Renaud P
    Biosens Bioelectron; 2007 Jan; 22(6):789-96. PubMed ID: 16600586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of intraluminal impedance.
    al-Zaben A; Chandrasekar V
    Biomed Sci Instrum; 2003; 39():48-52. PubMed ID: 12724867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple mathematical model for electric cell-substrate impedance sensing with extended applications.
    Xiao C; Luong JH
    Biosens Bioelectron; 2010 Mar; 25(7):1774-80. PubMed ID: 20096558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing.
    Lo CM; Keese CR; Giaever I
    Biophys J; 1995 Dec; 69(6):2800-7. PubMed ID: 8599686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Simulation study of line electrode for electrical impedance tomography].
    Wang Y; Sha H; Ren C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):986-9. PubMed ID: 18027681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS).
    Xiao C; Luong JH
    Biotechnol Prog; 2003; 19(3):1000-5. PubMed ID: 12790667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimum design of electrode structure and parameters in electrical impedance tomography.
    Yan W; Hong S; Chaoshi R
    Physiol Meas; 2006 Mar; 27(3):291-306. PubMed ID: 16462015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants.
    Newbold C; Richardson R; Huang CQ; Milojevic D; Cowan R; Shepherd R
    J Neural Eng; 2004 Dec; 1(4):218-27. PubMed ID: 15876642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended electrical model for impedance characterization of cultured HeLa cells in non-confluent state using ECIS electrodes.
    Mondal D; RoyChaudhuri C
    IEEE Trans Nanobioscience; 2013 Sep; 12(3):239-46. PubMed ID: 23995584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring viral-induced cell death using electric cell-substrate impedance sensing.
    Campbell CE; Laane MM; Haugarvoll E; Giaever I
    Biosens Bioelectron; 2007 Nov; 23(4):536-42. PubMed ID: 17826975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impedance measurements in the biomedical sciences.
    Coffman FD; Cohen S
    Stud Health Technol Inform; 2013; 185():185-205. PubMed ID: 23542936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance spectroscopy using maximum length sequences: application to single cell analysis.
    Gawad S; Sun T; Green NG; Morgan H
    Rev Sci Instrum; 2007 May; 78(5):054301. PubMed ID: 17552843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlated motion and oscillation of neighboring cells in vitro.
    Lo CM; Linton M; Keese CR; Giaever I
    Cell Commun Adhes; 2001; 8(3):139-45. PubMed ID: 11936188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SU-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues.
    Tijero M; Gabriel G; Caro J; Altuna A; Hernández R; Villa R; Berganzo J; Blanco FJ; Salido R; Fernández LJ
    Biosens Bioelectron; 2009 Apr; 24(8):2410-6. PubMed ID: 19167206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical cell-substrate impedance sensing with field-effect transistors is able to unravel cellular adhesion and detachment processes on a single cell level.
    Susloparova A; Koppenhöfer D; Law JK; Vu XT; Ingebrandt S
    Lab Chip; 2015 Feb; 15(3):668-79. PubMed ID: 25412224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS).
    Price DT; Rahman AR; Bhansali S
    Biosens Bioelectron; 2009 Mar; 24(7):2071-6. PubMed ID: 19101134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical impedance simulation and characterization of cell growth using the Fricke model.
    Cho S
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5228-32. PubMed ID: 22966550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-block electrical model of renal impedance.
    Hsu TL; Hsiu H; Chao PT; Li SP; Wang WK; Wang YY
    Physiol Meas; 2005 Aug; 26(4):387-99. PubMed ID: 15886434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional hydrogel cultures for modeling changes in tissue impedance around microfabricated neural probes.
    Frampton JP; Hynd MR; Williams JC; Shuler ML; Shain W
    J Neural Eng; 2007 Dec; 4(4):399-409. PubMed ID: 18057507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.