These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 17155127)

  • 1. Scaling in a general class of critical random Boolean networks.
    Mihaljev T; Drossel B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046101. PubMed ID: 17155127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling in critical random Boolean networks.
    Kaufman V; Mihaljev T; Drossel B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046124. PubMed ID: 16383485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Number of attractors in random Boolean networks.
    Drossel B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016110. PubMed ID: 16090039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of attractors of canalyzing random Boolean networks.
    Paul U; Kaufman V; Drossel B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026118. PubMed ID: 16605409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Number and length of attractors in a critical Kauffman model with connectivity one.
    Drossel B; Mihaljev T; Greil F
    Phys Rev Lett; 2005 Mar; 94(8):088701. PubMed ID: 15783941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling laws in critical random Boolean networks with general in- and out-degree distributions.
    Möller M; Drossel B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052106. PubMed ID: 23767486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical Boolean networks with scale-free in-degree distribution.
    Drossel B; Greil F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026102. PubMed ID: 19792195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superpolynomial growth in the number of attractors in Kauffman networks.
    Samuelsson B; Troein C
    Phys Rev Lett; 2003 Mar; 90(9):098701. PubMed ID: 12689263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exhaustive percolation on random networks.
    Samuelsson B; Socolar JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036113. PubMed ID: 17025714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From topology to dynamics in biochemical networks.
    Fox JJ; Hill CC
    Chaos; 2001 Dec; 11(4):809-815. PubMed ID: 12779520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic properties of Boolean dynamics in complex networks.
    Kinoshita S; Iguchi K; Yamada HS
    J Theor Biol; 2009 Feb; 256(3):351-69. PubMed ID: 19014957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of critical Kauffman networks under asynchronous stochastic update.
    Greil F; Drossel B
    Phys Rev Lett; 2005 Jul; 95(4):048701. PubMed ID: 16090847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attractor and basin entropies of random Boolean networks under asynchronous stochastic update.
    Shreim A; Berdahl A; Greil F; Davidsen J; Paczuski M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):035102. PubMed ID: 21230126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of the Kauffman model.
    Bilke S; Sjunnesson F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016129. PubMed ID: 11800758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biologically meaningful update rules increase the critical connectivity of generalized Kauffman networks.
    Wittmann DM; Marr C; Theis FJ
    J Theor Biol; 2010 Oct; 266(3):436-48. PubMed ID: 20654629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Random maps and attractors in random Boolean networks.
    Samuelsson B; Troein C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046112. PubMed ID: 16383473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feedback topology and XOR-dynamics in Boolean networks with varying input structure.
    Ciandrini L; Maffi C; Motta A; Bassetti B; Cosentino Lagomarsino M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026122. PubMed ID: 19792215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling in ordered and critical random boolean networks.
    Socolar JE; Kauffman SA
    Phys Rev Lett; 2003 Feb; 90(6):068702. PubMed ID: 12633339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling properties of scale-free evolving networks: continuous approach.
    Dorogovtsev SN; Mendes JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056125. PubMed ID: 11414979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boolean networks with variable number of inputs (K).
    Skarja M; Remic B; Jerman I
    Chaos; 2004 Jun; 14(2):205-16. PubMed ID: 15189048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.