These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 17155167)
1. Rhythmic motion of a droplet under a dc electric field. Hase M; Watanabe SN; Yoshikawa K Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046301. PubMed ID: 17155167 [TBL] [Abstract][Full Text] [Related]
2. Oscillatory Motion of Water Droplets Both in Oil and on Superhydrophobic Surface under Corona Discharge. Tang Q; Zhang Z; Zhang JH; Tang F; Wang C; Cui X Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557527 [TBL] [Abstract][Full Text] [Related]
3. An experimental study on the motion of water droplets in oil under ultrasonic irradiation. Luo X; He L; Wang H; Yan H; Qin Y Ultrason Sonochem; 2016 Jan; 28():110-117. PubMed ID: 26384889 [TBL] [Abstract][Full Text] [Related]
4. Regular self-motion of a liquid droplet powered by the chemical marangoni effect. Nagai K; Sumino Y; Yoshikawa K Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):197-200. PubMed ID: 17169535 [TBL] [Abstract][Full Text] [Related]
5. A microfluidic viscometer: Translation of oscillatory motion of a water microdroplet in oil under electric field. Dixit A; Parashar CK; Dutta S; Mahanta J; Kakati N; Bandyopadhyay D Electrophoresis; 2021 Nov; 42(21-22):2162-2170. PubMed ID: 34342881 [TBL] [Abstract][Full Text] [Related]
6. Back-and-forth micromotion of aqueous droplets in a dc electric field. Kurimura T; Ichikawa M; Takinoue M; Yoshikawa K Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042918. PubMed ID: 24229260 [TBL] [Abstract][Full Text] [Related]
7. Periodic deformation of microsize droplets in a microchannel induced by a transverse alternating electric field. Mochizuki T Langmuir; 2013 Oct; 29(41):12879-90. PubMed ID: 24090269 [TBL] [Abstract][Full Text] [Related]
8. Electrical charging of a conducting water droplet in a dielectric fluid on the electrode surface. Jung YM; Oh HC; Kang IS J Colloid Interface Sci; 2008 Jun; 322(2):617-23. PubMed ID: 18442825 [TBL] [Abstract][Full Text] [Related]
9. Communication: Mode bifurcation of droplet motion under stationary laser irradiation. Takabatake F; Yoshikawa K; Ichikawa M J Chem Phys; 2014 Aug; 141(5):051103. PubMed ID: 25106560 [TBL] [Abstract][Full Text] [Related]
10. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
11. Molecular Dynamics Simulation of a Brine Droplet under an Electric Field: Distinct Behavior Shown by NaCl and CaCl Li W; Zeng H; Tang T J Phys Chem B; 2023 Jul; 127(28):6395-6407. PubMed ID: 37417971 [TBL] [Abstract][Full Text] [Related]
12. Self-propulsion of aluminum particle-coated Janus droplet in alkaline solution. Li M; Li D J Colloid Interface Sci; 2018 Dec; 532():657-665. PubMed ID: 30121518 [TBL] [Abstract][Full Text] [Related]
13. Control of aqueous droplets using magnetic and electrostatic forces. Ohashi T; Kuyama H; Suzuki K; Nakamura S Anal Chim Acta; 2008 Apr; 612(2):218-25. PubMed ID: 18358869 [TBL] [Abstract][Full Text] [Related]
14. Discrete electrostatic charge transfer by the electrophoresis of a charged droplet in a dielectric liquid. Im DJ; Ahn MM; Yoo BS; Moon D; Lee DW; Kang IS Langmuir; 2012 Aug; 28(32):11656-61. PubMed ID: 22846106 [TBL] [Abstract][Full Text] [Related]
15. Water droplets' internal fluidity during horizontal motion on a superhydrophobic surface with an external electric field. Sakai M; Kono H; Nakajima A; Sakai H; Abe M; Fujishima A Langmuir; 2010 Feb; 26(3):1493-5. PubMed ID: 19924893 [TBL] [Abstract][Full Text] [Related]
16. Field induced anomalous spreading, oscillation, ejection, spinning, and breaking of oil droplets on a strongly slipping water surface. Kumar S; Sarma B; Dasmahapatra AK; Dalal A; Basu DN; Bandyopadhyay D Faraday Discuss; 2017 Jul; 199():115-128. PubMed ID: 28422194 [TBL] [Abstract][Full Text] [Related]
17. Geometric characterization of optimal electrode designs for improved droplet charging and actuation. Ahn MM; Im DJ; Kang IS Analyst; 2013 Nov; 138(24):7362-8. PubMed ID: 24162328 [TBL] [Abstract][Full Text] [Related]
18. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces. Birbarah P; Li Z; Pauls A; Miljkovic N Langmuir; 2015 Jul; 31(28):7885-96. PubMed ID: 26110977 [TBL] [Abstract][Full Text] [Related]
19. Electrostatic charging and control of droplets in microfluidic devices. Zhou H; Yao S Lab Chip; 2013 Mar; 13(5):962-9. PubMed ID: 23338121 [TBL] [Abstract][Full Text] [Related]
20. Redistribution of mobile surface charges of an oil droplet in water in applied electric field. Li M; Li D Adv Colloid Interface Sci; 2016 Oct; 236():142-51. PubMed ID: 27545649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]