These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 17155170)

  • 1. Interaction between shock wave and single inertial bubbles near an elastic boundary.
    Sankin GN; Zhong P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046304. PubMed ID: 17155170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The final stage of the collapse of a cloud of bubbles close to a rigid boundary.
    Brujan EA; Ikeda T; Yoshinaka K; Matsumoto Y
    Ultrason Sonochem; 2011 Jan; 18(1):59-64. PubMed ID: 20673738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithotripter shock wave interaction with a bubble near various biomaterials.
    Ohl SW; Klaseboer E; Szeri AJ; Khoo BC
    Phys Med Biol; 2016 Oct; 61(19):7031-7053. PubMed ID: 27649337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shock wave interaction with laser-generated single bubbles.
    Sankin GN; Simmons WN; Zhu SL; Zhong P
    Phys Rev Lett; 2005 Jul; 95(3):034501. PubMed ID: 16090745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of the characteristics of bubbles on types of sonochemical reactors.
    Yasui K; Tuziuti T; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):43-51. PubMed ID: 15474951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of dissolved-air concentration on spatial distribution of bubbles for sonochemistry.
    Tuziuti T; Yasui K; Sivakumar M; Iida Y
    Ultrasonics; 2006 Dec; 44 Suppl 1():e357-61. PubMed ID: 16780909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the physical origin of conical bubble structure under an ultrasonic horn.
    Dubus B; Vanhille C; Campos-Pozuelo C; Granger C
    Ultrason Sonochem; 2010 Jun; 17(5):810-8. PubMed ID: 20371200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inception of cavitation bubble clouds induced by high-intensity focused ultrasound.
    Chen H; Li X; Wan M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e427-9. PubMed ID: 16782158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of a spark-generated bubble with a rubber beam: numerical and experimental study.
    Gong SW; Goh BH; Ohl SW; Khoo BC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026307. PubMed ID: 23005854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method.
    Kobayashi K; Kodama T; Takahira H
    Phys Med Biol; 2011 Oct; 56(19):6421-40. PubMed ID: 21918295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonequilibrium bubbles in a flowing langmuir monolayer.
    Muruganathan R; Khattari Z; Fischer TM
    J Phys Chem B; 2005 Nov; 109(46):21772-8. PubMed ID: 16853828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamics of a non-equilibrium bubble near bio-materials.
    Ohl SW; Klaseboer E; Khoo BC
    Phys Med Biol; 2009 Oct; 54(20):6313-36. PubMed ID: 19809103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shock wave emission from laser-induced cavitation bubbles in polymer solutions.
    Brujan EA
    Ultrasonics; 2008 Sep; 48(5):423-6. PubMed ID: 18378271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method.
    Xu S; Zong Y; Li W; Zhang S; Wan M
    Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial study on a multibubble system for sonochemistry by laser-light scattering.
    Tuziuti T; Yasui K; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):73-7. PubMed ID: 15474955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.
    Kang ST; Huang YL; Yeh CK
    Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids.
    Faccio D; Tamošauskas G; Rubino E; Darginavičius J; Papazoglou DG; Tzortzakis S; Couairon A; Dubietis A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036304. PubMed ID: 23031010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of lithotripter shockwaves with single inertial cavitation bubbles.
    Klaseboer E; Fong SW; Turangan CK; Khoo BC; Szeri AJ; Calvisi ML; Sankin GN; Zhong P
    J Fluid Mech; 2007; 593():33-56. PubMed ID: 19018296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.