These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 17155170)
21. Jet and Shock Wave from Collapse of Two Cavitation Bubbles. Luo J; Niu Z Sci Rep; 2019 Feb; 9(1):1352. PubMed ID: 30718594 [TBL] [Abstract][Full Text] [Related]
22. Effect of non-acoustic parameters on heterogeneous sonoporation mediated by single-pulse ultrasound and microbubbles. Qin P; Xu L; Han T; Du L; Yu AC Ultrason Sonochem; 2016 Jul; 31():107-15. PubMed ID: 26964929 [TBL] [Abstract][Full Text] [Related]
23. Multiphase fluid-solid coupled analysis of shock-bubble-stone interaction in shockwave lithotripsy. Wang KG Int J Numer Method Biomed Eng; 2017 Oct; 33(10):. PubMed ID: 27885825 [TBL] [Abstract][Full Text] [Related]
24. Numerical simulations of the aspherical collapse of laser and acoustically generated bubbles. Tsiglifis K; Pelekasis NA Ultrason Sonochem; 2007 Apr; 14(4):456-69. PubMed ID: 17208501 [TBL] [Abstract][Full Text] [Related]
25. Focusing of shock waves induced by optical breakdown in water. Sankin GN; Zhou Y; Zhong P J Acoust Soc Am; 2008 Jun; 123(6):4071-81. PubMed ID: 18537359 [TBL] [Abstract][Full Text] [Related]
26. Modeling photothermal and acoustical induced microbubble generation and growth. Krasovitski B; Kislev H; Kimmel E Ultrasonics; 2007 Dec; 47(1-4):90-101. PubMed ID: 17910969 [TBL] [Abstract][Full Text] [Related]
27. Shock-induced collapse of a gas bubble in shockwave lithotripsy. Johnsen E; Colonius T J Acoust Soc Am; 2008 Oct; 124(4):2011-20. PubMed ID: 19062841 [TBL] [Abstract][Full Text] [Related]
28. Development and optimization of acoustic bubble structures at high frequencies. Lee J; Ashokkumar M; Yasui K; Tuziuti T; Kozuka T; Towata A; Iida Y Ultrason Sonochem; 2011 Jan; 18(1):92-8. PubMed ID: 20452265 [TBL] [Abstract][Full Text] [Related]
29. Transient subharmonic and ultraharmonic acoustic emission during dissolution of free gas bubbles. Biagi E; Breschi L; Masotti L IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jun; 52(6):1048-54. PubMed ID: 16118987 [TBL] [Abstract][Full Text] [Related]
30. Spectroscopic and thermodynamic features of conical bubble luminescence. Godínez FA; Navarrete M; Sánchez-Ake C; Mejía-Uriarte EV; Villagrán-Muniz M Ultrason Sonochem; 2012 May; 19(3):668-81. PubMed ID: 21963140 [TBL] [Abstract][Full Text] [Related]
31. Statistics of acoustically induced bubble-nucleation events in in vitro blood: a feasibility study. Gateau J; Taccoen N; Tanter M; Aubry JF Ultrasound Med Biol; 2013 Oct; 39(10):1812-25. PubMed ID: 23932270 [TBL] [Abstract][Full Text] [Related]
32. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam. Manzi NJ; Chitnis PV; Holt RG; Roy RA; Cleveland RO; Riemer B; Wendel M J Acoust Soc Am; 2010 Apr; 127(4):2231-9. PubMed ID: 20370004 [TBL] [Abstract][Full Text] [Related]
33. Agglomeration and rapid ascent of microbubbles by ultrasonic irradiation. Kobayashi D; Hayashida Y; Sano K; Terasaka K Ultrason Sonochem; 2011 Sep; 18(5):1193-6. PubMed ID: 21186134 [TBL] [Abstract][Full Text] [Related]
34. Effects of perfluorocarbon gases on the size and stability characteristics of phospholipid-coated microbubbles: osmotic effect versus interfacial film stabilization. Szíjjártó C; Rossi S; Waton G; Krafft MP Langmuir; 2012 Jan; 28(2):1182-9. PubMed ID: 22176688 [TBL] [Abstract][Full Text] [Related]
35. New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Mason TJ; Cobley AJ; Graves JE; Morgan D Ultrason Sonochem; 2011 Jan; 18(1):226-30. PubMed ID: 20605105 [TBL] [Abstract][Full Text] [Related]
36. Dynamic features of a laser-induced cavitation bubble near a solid boundary. Yang YX; Wang QX; Keat TS Ultrason Sonochem; 2013 Jul; 20(4):1098-103. PubMed ID: 23411165 [TBL] [Abstract][Full Text] [Related]
37. Theoretical and experimental validation of a dual-frequency excitation method for spatial control of cavitation. Sokka SD; Gauthier TP; Hynynen K Phys Med Biol; 2005 May; 50(9):2167-79. PubMed ID: 15843744 [TBL] [Abstract][Full Text] [Related]
38. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound. Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995 [TBL] [Abstract][Full Text] [Related]
39. Temporal effect of inertial cavitation with and without microbubbles on surface deformation of agarose S gel in the presence of 1-MHz focused ultrasound. Tomita Y; Matsuura T; Kodama T Ultrasonics; 2015 Jan; 55():1-5. PubMed ID: 25130135 [TBL] [Abstract][Full Text] [Related]
40. The Effect of Short Duration Ultrasound Pulses on the Interaction Between Individual Microbubbles and Fibrin Clots. Acconcia C; Leung BY; Manjunath A; Goertz DE Ultrasound Med Biol; 2015 Oct; 41(10):2774-82. PubMed ID: 26116160 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]