These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Mu-Tau Neutrinos: Influencing Fast Flavor Conversions in Supernovae. Capozzi F; Chakraborty M; Chakraborty S; Sen M Phys Rev Lett; 2020 Dec; 125(25):251801. PubMed ID: 33416371 [TBL] [Abstract][Full Text] [Related]
45. Search for a Sub-eV Sterile Neutrino Using Daya Bay's Full Dataset. An FP; Bai WD; Balantekin AB; Bishai M; Blyth S; Cao GF; Cao J; Chang JF; Chang Y; Chen HS; Chen HY; Chen SM; Chen Y; Chen YX; Chen ZY; Cheng J; Cheng YC; Cheng ZK; Cherwinka JJ; Chu MC; Cummings JP; Dalager O; Deng FS; Ding XY; Ding YY; Diwan MV; Dohnal T; Dolzhikov D; Dove J; Dugas KV; Duyang HY; Dwyer DA; Gallo JP; Gonchar M; Gong GH; Gong H; Gu WQ; Guo JY; Guo L; Guo XH; Guo YH; Guo Z; Hackenburg RW; Han Y; Hans S; He M; Heeger KM; Heng YK; Hor YK; Hsiung YB; Hu BZ; Hu JR; Hu T; Hu ZJ; Huang HX; Huang JH; Huang XT; Huang YB; Huber P; Jaffe DE; Jen KL; Ji XL; Ji XP; Johnson RA; Jones D; Kang L; Kettell SH; Kohn S; Kramer M; Langford TJ; Lee J; Lee JHC; Lei RT; Leitner R; Leung JKC; Li F; Li HL; Li JJ; Li QJ; Li RH; Li S; Li S; Li SC; Li WD; Li XN; Li XQ; Li YF; Li ZB; Liang H; Lin CJ; Lin GL; Lin S; Ling JJ; Link JM; Littenberg L; Littlejohn BR; Liu JC; Liu JL; Liu JX; Lu C; Lu HQ; Luk KB; Ma BZ; Ma XB; Ma XY; Ma YQ; Mandujano RC; Marshall C; McDonald KT; McKeown RD; Meng Y; Napolitano J; Naumov D; Naumova E; Nguyen TMT; Ochoa-Ricoux JP; Olshevskiy A; Park J; Patton S; Peng JC; Pun CSJ; Qi FZ; Qi M; Qian X; Raper N; Ren J; Morales Reveco C; Rosero R; Roskovec B; Ruan XC; Russell B; Steiner H; Sun JL; Tmej T; Tse WH; Tull CE; Tung YC; Viren B; Vorobel V; Wang CH; Wang J; Wang M; Wang NY; Wang RG; Wang W; Wang X; Wang YF; Wang Z; Wang Z; Wang ZM; Wei HY; Wei LH; Wei W; Wen LJ; Whisnant K; White CG; Wong HLH; Worcester E; Wu DR; Wu Q; Wu WJ; Xia DM; Xie ZQ; Xing ZZ; Xu HK; Xu JL; Xu T; Xue T; Yang CG; Yang L; Yang YZ; Yao HF; Ye M; Yeh M; Young BL; Yu HZ; Yu ZY; Yuan CZ; Yue BB; Zavadskyi V; Zeng S; Zeng Y; Zhan L; Zhang C; Zhang FY; Zhang HH; Zhang JL; Zhang JW; Zhang QM; Zhang SQ; Zhang XT; Zhang YM; Zhang YX; Zhang YY; Zhang ZJ; Zhang ZP; Zhang ZY; Zhao J; Zhao RZ; Zhou L; Zhuang HL; Zou JH; Phys Rev Lett; 2024 Aug; 133(5):051801. PubMed ID: 39159085 [TBL] [Abstract][Full Text] [Related]
46. Status of non-standard neutrino interactions. Ohlsson T Rep Prog Phys; 2013 Apr; 76(4):044201. PubMed ID: 23481442 [TBL] [Abstract][Full Text] [Related]
47. Monte Carlo exploration of Mikheyev-Smirnov-Wolfenstein solutions to the solar neutrino problem. Shi X; Schramm DN; Bahcall JN Phys Rev Lett; 1992 Aug; 69(5):717-720. PubMed ID: 10047015 [No Abstract] [Full Text] [Related]
48. Implications of new GALLEX results for the Mikheyev-Smirnov-Wolfenstein solution of the solar neutrino problem. Gelb JM; Kwong W; Rosen SP Phys Rev Lett; 1992 Sep; 69(13):1864-1866. PubMed ID: 10046335 [No Abstract] [Full Text] [Related]
50. Neutrino-lepton masses, Zee scalars, and muon g-2. Dicus DA; He HJ; Ng JN Phys Rev Lett; 2001 Sep; 87(11):111803. PubMed ID: 11531513 [TBL] [Abstract][Full Text] [Related]
51. Octant of θ_{23} in Danger with a Light Sterile Neutrino. Agarwalla SK; Chatterjee SS; Palazzo A Phys Rev Lett; 2017 Jan; 118(3):031804. PubMed ID: 28157374 [TBL] [Abstract][Full Text] [Related]
52. Atmospheric, long baseline, and reactor neutrino data constraints on theta_{13}. Roa JE; Latimer DC; Ernst DJ Phys Rev Lett; 2009 Aug; 103(6):061804. PubMed ID: 19792553 [TBL] [Abstract][Full Text] [Related]
53. Neutrino mass measurements. Wark DL Philos Trans A Math Phys Eng Sci; 2003 Nov; 361(1812):2527-51. PubMed ID: 14667316 [TBL] [Abstract][Full Text] [Related]
54. Are there sterile neutrinos at the eV scale? Kopp J; Maltoni M; Schwetz T Phys Rev Lett; 2011 Aug; 107(9):091801. PubMed ID: 21929224 [TBL] [Abstract][Full Text] [Related]
55. Roles of Fast Neutrino-Flavor Conversion on the Neutrino-Heating Mechanism of Core-Collapse Supernova. Nagakura H Phys Rev Lett; 2023 May; 130(21):211401. PubMed ID: 37295106 [TBL] [Abstract][Full Text] [Related]
56. Mikheyev-Smirnov-Wolfenstein enhancement of oscillations as a possible solution to the solar-neutrino problem. Rosen SP; Gelb JM Phys Rev D Part Fields; 1986 Aug; 34(4):969-979. PubMed ID: 9957237 [No Abstract] [Full Text] [Related]
57. Time-Dependent and Quasisteady Features of Fast Neutrino-Flavor Conversion. Nagakura H; Zaizen M Phys Rev Lett; 2022 Dec; 129(26):261101. PubMed ID: 36608190 [TBL] [Abstract][Full Text] [Related]
58. No new cosmological concordance with massive sterile neutrinos. Leistedt B; Peiris HV; Verde L Phys Rev Lett; 2014 Jul; 113(4):041301. PubMed ID: 25105605 [TBL] [Abstract][Full Text] [Related]
59. Search for Sub-eV Sterile Neutrinos at RENO. Choi JH; Jang HI; Jang JS; Jeon SH; Joo KK; Ju K; Jung DE; Kim JG; Kim JH; Kim JY; Kim SB; Kim SY; Kim W; Kwon E; Lee DH; Lee HG; Lim IT; Moon DH; Pac MY; Seo H; Seo JW; Shin CD; Yang BS; Yoo J; Yoon SG; Yeo IS; Yu I; Phys Rev Lett; 2020 Nov; 125(19):191801. PubMed ID: 33216576 [TBL] [Abstract][Full Text] [Related]
60. Can sterile neutrinos be ruled out as warm dark matter candidates? Viel M; Lesgourgues J; Haehnelt MG; Matarrese S; Riotto A Phys Rev Lett; 2006 Aug; 97(7):071301. PubMed ID: 17026219 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]