These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17155295)

  • 1. Exactly solvable models of adaptive networks.
    Rivoire O; Barré J
    Phys Rev Lett; 2006 Oct; 97(14):148701. PubMed ID: 17155295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-size scaling in random K-satisfiability problems.
    Lee SH; Ha M; Jeon C; Jeong H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061109. PubMed ID: 21230646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Satisfiability-unsatisfiability transition in the adversarial satisfiability problem.
    Bardoscia M; Nagaj D; Scardicchio A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032128. PubMed ID: 24730811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical solution-space analysis of satisfiability problems.
    Mann A; Hartmann AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056702. PubMed ID: 21230614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entropy landscape and non-Gibbs solutions in constraint satisfaction problems.
    Dall'Asta L; Ramezanpour A; Zecchina R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031118. PubMed ID: 18517340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robustness of a network formed of spatially embedded networks.
    Shekhtman LM; Berezin Y; Danziger MM; Havlin S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012809. PubMed ID: 25122344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Witness of unsatisfiability for a random 3-satisfiability formula.
    Wu LL; Zhou HJ; Alava M; Aurell E; Orponen P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052807. PubMed ID: 23767584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robustness of a network formed by n interdependent networks with a one-to-one correspondence of dependent nodes.
    Gao J; Buldyrev SV; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066134. PubMed ID: 23005189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local search methods based on variable focusing for random K-satisfiability.
    Lemoy R; Alava M; Aurell E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013305. PubMed ID: 25679737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptability and "intermediate phase" in randomly connected networks.
    Barré J; Bishop AR; Lookman T; Saxena A
    Phys Rev Lett; 2005 May; 94(20):208701. PubMed ID: 16090295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability-to-instability transition in the structure of large-scale networks.
    Hu D; Ronhovde P; Nussinov Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066106. PubMed ID: 23368003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Condensation transitions in a model for a directed network with weighted links.
    Angel AG; Hanney T; Evans MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016105. PubMed ID: 16486214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simplest random K-satisfiability problem.
    Ricci-Tersenghi F; Weigt M; Zecchina R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026702. PubMed ID: 11308607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exact satisfiability threshold for k-satisfiability problems on a Bethe lattice.
    Krishnamurthy S; Sumedha
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042144. PubMed ID: 26565205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weighted evolving networks.
    Yook SH; Jeong H; Barabási AL; Tu Y
    Phys Rev Lett; 2001 Jun; 86(25):5835-8. PubMed ID: 11415370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dense percolation in large-scale mean-field random networks is provably "explosive".
    Veremyev A; Boginski V; Krokhmal PA; Jeffcoat DE
    PLoS One; 2012; 7(12):e51883. PubMed ID: 23272185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase transitions of the typical algorithmic complexity of the random satisfiability problem studied with linear programming.
    Schawe H; Bleim R; Hartmann AK
    PLoS One; 2019; 14(4):e0215309. PubMed ID: 31002678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clique percolation in random networks.
    Derényi I; Palla G; Vicsek T
    Phys Rev Lett; 2005 Apr; 94(16):160202. PubMed ID: 15904198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random graphs with clustering.
    Newman ME
    Phys Rev Lett; 2009 Jul; 103(5):058701. PubMed ID: 19792540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytic and algorithmic solution of random satisfiability problems.
    Mézard M; Parisi G; Zecchina R
    Science; 2002 Aug; 297(5582):812-5. PubMed ID: 12089451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.