These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 17155344)

  • 1. Slippage of water past superhydrophobic carbon nanotube forests in microchannels.
    Joseph P; Cottin-Bizonne C; Benoît JM; Ybert C; Journet C; Tabeling P; Bocquet L
    Phys Rev Lett; 2006 Oct; 97(15):156104. PubMed ID: 17155344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoupling of the liquid response of a superhydrophobic quartz crystal microbalance.
    Roach P; McHale G; Evans CR; Shirtcliffe NJ; Newton MI
    Langmuir; 2007 Sep; 23(19):9823-30. PubMed ID: 17705513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of slip length on superhydrophobic surfaces.
    Maali A; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2012 May; 370(1967):2304-20. PubMed ID: 22509060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local Flow Field and Slip Length of Superhydrophobic Surfaces.
    Schäffel D; Koynov K; Vollmer D; Butt HJ; Schönecker C
    Phys Rev Lett; 2016 Apr; 116(13):134501. PubMed ID: 27081981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective slippage on superhydrophobic trapezoidal grooves.
    Zhou J; Asmolov ES; Schmid F; Vinogradova OI
    J Chem Phys; 2013 Nov; 139(17):174708. PubMed ID: 24206323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable hydrodynamic characteristics in microchannels with biomimetic superhydrophobic (lotus leaf replica) walls.
    Dey R; Raj M K; Bhandaru N; Mukherjee R; Chakraborty S
    Soft Matter; 2014 May; 10(19):3451-62. PubMed ID: 24647804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drag reduction on laser-patterned hierarchical superhydrophobic surfaces.
    Tanvir Ahmmed KM; Kietzig AM
    Soft Matter; 2016 Jun; 12(22):4912-22. PubMed ID: 27146256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas cushion model and hydrodynamic boundary conditions for superhydrophobic textures.
    Nizkaya TV; Asmolov ES; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043017. PubMed ID: 25375603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing effective slippage on superhydrophobic stripes by atomic force microscopy.
    Nizkaya TV; Dubov AL; Mourran A; Vinogradova OI
    Soft Matter; 2016 Aug; 12(33):6910-7. PubMed ID: 27476481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition.
    Liu G; Fu L; Rode AV; Craig VS
    Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preventing the Cassie-Wenzel transition using surfaces with noncommunicating roughness elements.
    Bahadur V; Garimella SV
    Langmuir; 2009 Apr; 25(8):4815-20. PubMed ID: 19260655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of slippage with tunable bubble mattresses.
    Karatay E; Haase AS; Visser CW; Sun C; Lohse D; Tsai PA; Lammertink RG
    Proc Natl Acad Sci U S A; 2013 May; 110(21):8422-6. PubMed ID: 23650352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy.
    Bhushan B; Wang Y; Maali A
    Langmuir; 2009 Jul; 25(14):8117-21. PubMed ID: 19402684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface.
    Promraksa A; Chuang YC; Chen LJ
    J Colloid Interface Sci; 2014 Mar; 418():8-19. PubMed ID: 24461812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrowetting control of Cassie-to-Wenzel transitions in superhydrophobic carbon nanotube-based nanocomposites.
    Han Z; Tay B; Tan C; Shakerzadeh M; Ostrikov KK
    ACS Nano; 2009 Oct; 3(10):3031-6. PubMed ID: 19754132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switching fluid slippage on pH-responsive superhydrophobic surfaces.
    Wu Y; Liu Z; Liang Y; Pei X; Zhou F; Xue Q
    Langmuir; 2014 Jun; 30(22):6463-8. PubMed ID: 24845303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of the rose petal effect over single- and dual-scale roughness surfaces.
    Yeh KY; Cho KH; Yeh YH; Promraksa A; Huang CH; Hsu CC; Chen LJ
    Nanotechnology; 2014 Aug; 25(34):345303. PubMed ID: 25100802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.