These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 17155474)

  • 1. Optical lattice polarization effects on hyperpolarizability of atomic clock transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG
    Phys Rev Lett; 2006 Oct; 97(17):173601. PubMed ID: 17155474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperpolarizability effects in a Sr optical lattice clock.
    Brusch A; Le Targat R; Baillard X; Fouché M; Lemonde P
    Phys Rev Lett; 2006 Mar; 96(10):103003. PubMed ID: 16605730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical lattice induced light shifts in an yb atomic clock.
    Barber ZW; Stalnaker JE; Lemke ND; Poli N; Oates CW; Fortier TM; Diddams SA; Hollberg L; Hoyt CW; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2008 Mar; 100(10):103002. PubMed ID: 18352181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG; Oates CW
    Phys Rev Lett; 2008 Nov; 101(19):193601. PubMed ID: 19113267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks.
    Taichenachev AV; Yudin VI; Oates CW; Hoyt CW; Barber ZW; Hollberg L
    Phys Rev Lett; 2006 Mar; 96(8):083001. PubMed ID: 16606175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospects for optical clocks with a blue-detuned lattice.
    Takamoto M; Katori H; Marmo SI; Ovsiannikov VD; Pal'chikov VG
    Phys Rev Lett; 2009 Feb; 102(6):063002. PubMed ID: 19257584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock.
    Brown RC; Phillips NB; Beloy K; McGrew WF; Schioppo M; Fasano RJ; Milani G; Zhang X; Hinkley N; Leopardi H; Yoon TH; Nicolodi D; Fortier TM; Ludlow AD
    Phys Rev Lett; 2017 Dec; 119(25):253001. PubMed ID: 29303326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magic wavelength to make optical lattice clocks insensitive to atomic motion.
    Katori H; Hashiguchi K; Il'inova EY; Ovsiannikov VD
    Phys Rev Lett; 2009 Oct; 103(15):153004. PubMed ID: 19905634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopy of the 1S0-3P0 clock transition of 87Sr in an optical lattice.
    Takamoto M; Katori H
    Phys Rev Lett; 2003 Nov; 91(22):223001. PubMed ID: 14683233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncertainty Evaluation of an
    Kobayashi T; Akamatsu D; Hisai Y; Tanabe T; Inaba H; Suzuyama T; Hong FL; Hosaka K; Yasuda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2449-2458. PubMed ID: 30235125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rydberg spectroscopy in an optical lattice: blackbody thermometry for atomic clocks.
    Ovsiannikov VD; Derevianko A; Gibble K
    Phys Rev Lett; 2011 Aug; 107(9):093003. PubMed ID: 21929236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Operational Magic Intensity for Sr Optical Lattice Clocks.
    Ushijima I; Takamoto M; Katori H
    Phys Rev Lett; 2018 Dec; 121(26):263202. PubMed ID: 30636149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromagic clock: microwave clock based on atoms in an engineered optical lattice.
    Beloy K; Derevianko A; Dzuba VA; Flambaum VV
    Phys Rev Lett; 2009 Mar; 102(12):120801. PubMed ID: 19392262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice.
    Barber ZW; Hoyt CW; Oates CW; Hollberg L; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2006 Mar; 96(8):083002. PubMed ID: 16606176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multipolar Polarizabilities and Hyperpolarizabilities in the Sr Optical Lattice Clock.
    Porsev SG; Safronova MS; Safronova UI; Kozlov MG
    Phys Rev Lett; 2018 Feb; 120(6):063204. PubMed ID: 29481257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards a Mg Lattice Clock: Observation of the ^{1}S_{0}-^{3}P_{0} Transition and Determination of the Magic Wavelength.
    Kulosa AP; Fim D; Zipfel KH; Rühmann S; Sauer S; Jha N; Gibble K; Ertmer W; Rasel EM; Safronova MS; Safronova UI; Porsev SG
    Phys Rev Lett; 2015 Dec; 115(24):240801. PubMed ID: 26705620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carrier thermometry of cold ytterbium atoms in an optical lattice clock.
    Han C; Zhou M; Zhang X; Gao Q; Xu Y; Li S; Zhang S; Xu X
    Sci Rep; 2018 May; 8(1):7927. PubMed ID: 29784962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation and cancellation of a perturbing dc stark shift in strontium optical lattice clocks.
    Lodewyck J; Zawada M; Lorini L; Gurov M; Lemonde P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):411-5. PubMed ID: 22481773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A superradiant clock laser on a magic wavelength optical lattice.
    Maier T; Kraemer S; Ostermann L; Ritsch H
    Opt Express; 2014 Jun; 22(11):13269-79. PubMed ID: 24921521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S(0)↔3P(0) clock transition.
    Yi L; Mejri S; McFerran JJ; Le Coq Y; Bize S
    Phys Rev Lett; 2011 Feb; 106(7):073005. PubMed ID: 21405514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.