These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 17155525)
1. Melting of discrete vortices via quantum fluctuations. Lee C; Alexander TJ; Kivshar YS Phys Rev Lett; 2006 Nov; 97(18):180408. PubMed ID: 17155525 [TBL] [Abstract][Full Text] [Related]
2. Quantum signatures of charge flipping vortices in the Bose-Hubbard trimer. Jason P; Johansson M Phys Rev E; 2016 Nov; 94(5-1):052215. PubMed ID: 27967094 [TBL] [Abstract][Full Text] [Related]
3. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Greiner M; Mandel O; Esslinger T; Hänsch TW; Bloch I Nature; 2002 Jan; 415(6867):39-44. PubMed ID: 11780110 [TBL] [Abstract][Full Text] [Related]
4. Effect of quantum fluctuations on the dipolar motion of bose-einstein condensates in optical lattices. Polkovnikov A; Wang DW Phys Rev Lett; 2004 Aug; 93(7):070401. PubMed ID: 15324216 [TBL] [Abstract][Full Text] [Related]
5. Variational ansatz for the superfluid Mott-insulator transition in optical lattices. García-Ripoll JJ; Cirac J; Zoller P; Kollath C; Schollwöck U; von Delft J Opt Express; 2004 Jan; 12(1):42-54. PubMed ID: 19471510 [TBL] [Abstract][Full Text] [Related]
6. Spectral and entanglement properties of the bosonic Haldane insulator. Ejima S; Lange F; Fehske H Phys Rev Lett; 2014 Jul; 113(2):020401. PubMed ID: 25062142 [TBL] [Abstract][Full Text] [Related]
7. Magnetic and superfluid transitions in the one-dimensional spin-1 boson Hubbard model. Batrouni GG; Rousseau VG; Scalettar RT Phys Rev Lett; 2009 Apr; 102(14):140402. PubMed ID: 19392416 [TBL] [Abstract][Full Text] [Related]
8. Sweeping from the superfluid to the Mott phase in the Bose-Hubbard model. Schützhold R; Uhlmann M; Xu Y; Fischer UR Phys Rev Lett; 2006 Nov; 97(20):200601. PubMed ID: 17155669 [TBL] [Abstract][Full Text] [Related]
9. Phase-slip-induced dissipation in an atomic Bose-Hubbard system. McKay D; White M; Pasienski M; DeMarco B Nature; 2008 May; 453(7191):76-9. PubMed ID: 18451857 [TBL] [Abstract][Full Text] [Related]
10. Dynamic stimulation of quantum coherence in systems of lattice bosons. Robertson A; Galitski VM; Refael G Phys Rev Lett; 2011 Apr; 106(16):165701. PubMed ID: 21599386 [TBL] [Abstract][Full Text] [Related]
11. Pair superfluidity of three-body constrained bosons in two dimensions. Bonnes L; Wessel S Phys Rev Lett; 2011 May; 106(18):185302. PubMed ID: 21635100 [TBL] [Abstract][Full Text] [Related]
12. Fluctuations and Correlations of Pure Quantum Turbulence in Superfluid 3He-B. Bradley DI; Fisher SN; Guénault AM; Haley RP; O'Sullivan S; Pickett GR; Tsepelin V Phys Rev Lett; 2008 Aug; 101(6):065302. PubMed ID: 18764468 [TBL] [Abstract][Full Text] [Related]
14. Probing the superfluid-to-Mott insulator transition at the single-atom level. Bakr WS; Peng A; Tai ME; Ma R; Simon J; Gillen JI; Fölling S; Pollet L; Greiner M Science; 2010 Jul; 329(5991):547-50. PubMed ID: 20558666 [TBL] [Abstract][Full Text] [Related]
15. Transition from a strongly interacting 1d superfluid to a Mott insulator. Stöferle T; Moritz H; Schori C; Köhl M; Esslinger T Phys Rev Lett; 2004 Apr; 92(13):130403. PubMed ID: 15089587 [TBL] [Abstract][Full Text] [Related]
16. Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Hadzibabic Z; Krüger P; Cheneau M; Battelier B; Dalibard J Nature; 2006 Jun; 441(7097):1118-21. PubMed ID: 16810249 [TBL] [Abstract][Full Text] [Related]
18. Periodic mean-field solutions and the spectra of discrete bosonic fields: Trace formula for Bose-Hubbard models. Engl T; Urbina JD; Richter K Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062907. PubMed ID: 26764774 [TBL] [Abstract][Full Text] [Related]