These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 17155550)
1. Rayleigh-Taylor turbulence is nothing like Kolmogorov turbulence in the self-similar regime. Poujade O Phys Rev Lett; 2006 Nov; 97(18):185002. PubMed ID: 17155550 [TBL] [Abstract][Full Text] [Related]
2. Local dissipation scales in two-dimensional Rayleigh-Taylor turbulence. Qiu X; Liu YL; Zhou Q Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043012. PubMed ID: 25375598 [TBL] [Abstract][Full Text] [Related]
3. Acceleration and turbulence in Rayleigh-Taylor mixing. Sreenivasan KR; Abarzhi SI Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130267. PubMed ID: 24146015 [TBL] [Abstract][Full Text] [Related]
4. What is certain and what is not so certain in our knowledge of Rayleigh-Taylor mixing? Anisimov SI; Drake RP; Gauthier S; Meshkov EE; Abarzhi SI Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130266. PubMed ID: 24146014 [TBL] [Abstract][Full Text] [Related]
5. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling. Schilling O; Mueschke NJ Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290 [TBL] [Abstract][Full Text] [Related]
6. The density ratio dependence of self-similar Rayleigh-Taylor mixing. Youngs DL Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120173. PubMed ID: 24146005 [TBL] [Abstract][Full Text] [Related]
7. Development and validation of a turbulent-mix model for variable-density and compressible flows. Banerjee A; Gore RA; Andrews MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046309. PubMed ID: 21230392 [TBL] [Abstract][Full Text] [Related]
8. Compressibility effects in Rayleigh-Taylor instability-induced flows. Gauthier S; Le Creurer B Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1681-704. PubMed ID: 20211880 [TBL] [Abstract][Full Text] [Related]
9. Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach. Poujade O; Peybernes M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016316. PubMed ID: 20365469 [TBL] [Abstract][Full Text] [Related]
10. Kolmogorov scaling and intermittency in Rayleigh-Taylor turbulence. Boffetta G; Mazzino A; Musacchio S; Vozella L Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):065301. PubMed ID: 19658550 [TBL] [Abstract][Full Text] [Related]
11. Effects of polymer additives on Rayleigh-Taylor turbulence. Boffetta G; Mazzino A; Musacchio S Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056318. PubMed ID: 21728658 [TBL] [Abstract][Full Text] [Related]
12. Implications of the Monin-Yaglom relation for Rayleigh-Taylor turbulence. Soulard O Phys Rev Lett; 2012 Dec; 109(25):254501. PubMed ID: 23368468 [TBL] [Abstract][Full Text] [Related]
13. Scaling law of mixing layer in cylindrical Rayleigh-Taylor turbulence. Zhao Z; Wang P; Liu NS; Lu XY Phys Rev E; 2021 Nov; 104(5-2):055104. PubMed ID: 34942766 [TBL] [Abstract][Full Text] [Related]
14. Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability. Livescu D Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120185. PubMed ID: 24146007 [TBL] [Abstract][Full Text] [Related]
15. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing. Morgan BE; Schilling O; Hartland TA Phys Rev E; 2018 Jan; 97(1-1):013104. PubMed ID: 29448443 [TBL] [Abstract][Full Text] [Related]
16. Dimensional effects in Rayleigh-Taylor mixing. Boffetta G; Musacchio S Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210084. PubMed ID: 35094565 [TBL] [Abstract][Full Text] [Related]
17. Evolution of length scales and statistics of Richtmyer-Meshkov instability from direct numerical simulations. Tritschler VK; Zubel M; Hickel S; Adams NA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063001. PubMed ID: 25615181 [TBL] [Abstract][Full Text] [Related]
19. Suppression of Rayleigh-Taylor turbulence by time-periodic acceleration. Boffetta G; Magnani M; Musacchio S Phys Rev E; 2019 Mar; 99(3-1):033110. PubMed ID: 30999487 [TBL] [Abstract][Full Text] [Related]
20. Validation and application of the lattice Boltzmann algorithm for a turbulent immiscible Rayleigh-Taylor system. Tavares HS; Biferale L; Sbragaglia M; Mailybaev AA Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200396. PubMed ID: 34455841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]