These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 17155561)

  • 1. Bosonization approach for bilayer quantum Hall systems at nu(T)=1.
    Doretto RL; Caldeira AO; Smith CM
    Phys Rev Lett; 2006 Nov; 97(18):186401. PubMed ID: 17155561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Study of Quantum Hall Bilayers at Total Filling ν_{T}=1: A New Phase at Intermediate Layer Distances.
    Zhu Z; Fu L; Sheng DN
    Phys Rev Lett; 2017 Oct; 119(17):177601. PubMed ID: 29219462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong correlation to weak correlation phase transition in bilayer quantum Hall systems.
    Schliemann J; Girvin SM; MacDonald AH
    Phys Rev Lett; 2001 Feb; 86(9):1849-52. PubMed ID: 11290264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic gap and exciton condensation in the nu{T}=1 bilayer system.
    Giudici P; Muraki K; Kumada N; Fujisawa T
    Phys Rev Lett; 2010 Feb; 104(5):056802. PubMed ID: 20366783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilayer quantum hall systems at nu(T)=1: coulomb drag and the transition from weak to strong interlayer coupling.
    Kellogg M; Eisenstein JP; Pfeiffer LN; West KW
    Phys Rev Lett; 2003 Jun; 90(24):246801. PubMed ID: 12857210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dipolar excitons, spontaneous phase coherence, and superfluid-insulator transition in bilayer quantum Hall systems at nu = 1.
    Yang K
    Phys Rev Lett; 2001 Jul; 87(5):056802. PubMed ID: 11497797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin-dependent phase diagram of the nuT=1 bilayer electron system.
    Giudici P; Muraki K; Kumada N; Hirayama Y; Fujisawa T
    Phys Rev Lett; 2008 Mar; 100(10):106803. PubMed ID: 18352219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precursors to Exciton Condensation in Quantum Hall Bilayers.
    Eisenstein JP; Pfeiffer LN; West KW
    Phys Rev Lett; 2019 Aug; 123(6):066802. PubMed ID: 31491172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vortices, tunneling, and deconfinement in bilayer quantum Hall excitonic superfluid.
    Wang Z
    Phys Rev Lett; 2005 May; 94(17):176804. PubMed ID: 15904326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topological Exciton Fermi Surfaces in Two-Component Fractional Quantized Hall Insulators.
    Barkeshli M; Nayak C; Papić Z; Young A; Zaletel M
    Phys Rev Lett; 2018 Jul; 121(2):026603. PubMed ID: 30085706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilayer coherent and quantum Hall phases: duality and quantum disorder.
    Demler E; Nayak C; Das Sarma S
    Phys Rev Lett; 2001 Feb; 86(9):1853-6. PubMed ID: 11290265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunneling, dissipation, and superfluid transition in quantum Hall bilayers.
    Wang Z
    Phys Rev Lett; 2004 Apr; 92(13):136803. PubMed ID: 15089637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interlayer coherent composite Fermi liquid phase in quantum Hall bilayers.
    Alicea J; Motrunich OI; Refael G; Fisher MP
    Phys Rev Lett; 2009 Dec; 103(25):256403. PubMed ID: 20366269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonant rayleigh scattering from bilayer quantum Hall phases.
    Luin S; Pellegrini V; Pinczuk A; Dennis BS; Pfeiffer LN; West KW
    Phys Rev Lett; 2006 Nov; 97(21):216802. PubMed ID: 17155764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confinement-deconfinement transition due to spontaneous symmetry breaking in quantum Hall bilayers.
    Pikulin DI; Silvestrov PG; Hyart T
    Nat Commun; 2016 Jan; 7():10462. PubMed ID: 26804790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a finite-temperature phase transition in a bilayer quantum Hall system.
    Champagne AR; Eisenstein JP; Pfeiffer LN; West KW
    Phys Rev Lett; 2008 Mar; 100(9):096801. PubMed ID: 18352740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coexistence of composite bosons and composite fermions in nu = 1/2 + 1/2 quantum Hall bilayers.
    Simon SH; Rezayi EH; Milovanovic MV
    Phys Rev Lett; 2003 Jul; 91(4):046803. PubMed ID: 12906685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of topological excitations on shapiro steps and microwave dynamical conductance in bilayer exciton condensates.
    Hyart T; Rosenow B
    Phys Rev Lett; 2013 Feb; 110(7):076806. PubMed ID: 25166394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay of exciton condensation and the quantum spin hall effect in InAs/GaSb bilayers.
    Pikulin DI; Hyart T
    Phys Rev Lett; 2014 May; 112(17):176403. PubMed ID: 24836261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable Pfaffian state in bilayer graphene.
    Apalkov VM; Chakraborty T
    Phys Rev Lett; 2011 Oct; 107(18):186803. PubMed ID: 22107662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.