These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 17155583)
1. Eigenvalue spectra of random matrices for neural networks. Rajan K; Abbott LF Phys Rev Lett; 2006 Nov; 97(18):188104. PubMed ID: 17155583 [TBL] [Abstract][Full Text] [Related]
2. Eigenvalue spectra of asymmetric random matrices for multicomponent neural networks. Wei Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066116. PubMed ID: 23005171 [TBL] [Abstract][Full Text] [Related]
3. Correlation between eigenvalue spectra and dynamics of neural networks. Zhou Q; Jin T; Zhao H Neural Comput; 2009 Oct; 21(10):2931-41. PubMed ID: 19635013 [TBL] [Abstract][Full Text] [Related]
4. Eigenspectrum bounds for semirandom matrices with modular and spatial structure for neural networks. Muir DR; Mrsic-Flogel T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042808. PubMed ID: 25974548 [TBL] [Abstract][Full Text] [Related]
5. Free random Lévy and Wigner-Lévy matrices. Burda Z; Jurkiewicz J; Nowak MA; Papp G; Zahed I Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051126. PubMed ID: 17677041 [TBL] [Abstract][Full Text] [Related]
6. Effect in the spectra of eigenvalues and dynamics of RNNs trained with excitatory-inhibitory constraint. Jarne C; Caruso M Cogn Neurodyn; 2024 Jun; 18(3):1323-1335. PubMed ID: 38826641 [TBL] [Abstract][Full Text] [Related]
7. Speed of synchronization in complex networks of neural oscillators: analytic results based on Random Matrix Theory. Timme M; Geisel T; Wolf F Chaos; 2006 Mar; 16(1):015108. PubMed ID: 16599774 [TBL] [Abstract][Full Text] [Related]
8. Commutative law for products of infinitely large isotropic random matrices. Burda Z; Livan G; Swiech A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022107. PubMed ID: 24032775 [TBL] [Abstract][Full Text] [Related]
9. Exact Distributions of Finite Random Matrices and Their Applications to Spectrum Sensing. Zhang W; Wang CX; Tao X; Patcharamaneepakorn P Sensors (Basel); 2016 Jul; 16(8):. PubMed ID: 27483273 [TBL] [Abstract][Full Text] [Related]
10. Theory for the conditioned spectral density of noninvariant random matrices. Pérez Castillo I; Metz FL Phys Rev E; 2018 Aug; 98(2-1):020102. PubMed ID: 30253505 [TBL] [Abstract][Full Text] [Related]
11. The spectrum of covariance matrices of randomly connected recurrent neuronal networks with linear dynamics. Hu Y; Sompolinsky H PLoS Comput Biol; 2022 Jul; 18(7):e1010327. PubMed ID: 35862445 [TBL] [Abstract][Full Text] [Related]
12. Eigenvalue spectra of large correlated random matrices. Kuczala A; Sharpee TO Phys Rev E; 2016 Nov; 94(5-1):050101. PubMed ID: 27967175 [TBL] [Abstract][Full Text] [Related]
13. Eigenvalue distributions for a class of covariance matrices with application to Bienenstock-Cooper-Munro neurons under noisy conditions. Bazzani A; Castellani GC; Cooper LN Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051917. PubMed ID: 20866271 [TBL] [Abstract][Full Text] [Related]
14. Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Börgers C; Kopell N Neural Comput; 2003 Mar; 15(3):509-38. PubMed ID: 12620157 [TBL] [Abstract][Full Text] [Related]
15. Wigner surmise for Hermitian and non-Hermitian chiral random matrices. Akemann G; Bittner E; Phillips MJ; Shifrin L Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):065201. PubMed ID: 20365218 [TBL] [Abstract][Full Text] [Related]
16. Non-Hermitian localization in biological networks. Amir A; Hatano N; Nelson DR Phys Rev E; 2016 Apr; 93():042310. PubMed ID: 27176315 [TBL] [Abstract][Full Text] [Related]
18. Properties of networks with partially structured and partially random connectivity. Ahmadian Y; Fumarola F; Miller KD Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012820. PubMed ID: 25679669 [TBL] [Abstract][Full Text] [Related]
19. Approximating spectral impact of structural perturbations in large networks. Milanese A; Sun J; Nishikawa T Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046112. PubMed ID: 20481791 [TBL] [Abstract][Full Text] [Related]
20. Assortative and disassortative mixing investigated using the spectra of graphs. Jalan S; Yadav A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012813. PubMed ID: 25679663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]