BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 1715563)

  • 1. On the multiple-minima problem in the conformational analysis of polypeptides. V. Application of the self-consistent electrostatic field and the electrostatically driven Monte Carlo methods to bovine pancreatic trypsin inhibitor.
    Ripoll DR; Piela L; Vásquez M; Scheraga HA
    Proteins; 1991; 10(3):188-98. PubMed ID: 1715563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empirical solvation models in the context of conformational energy searches: application to bovine pancreatic trypsin inhibitor.
    Williams RL; Vila J; Perrot G; Scheraga HA
    Proteins; 1992 Sep; 14(1):110-9. PubMed ID: 1384032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the multiple-minima problem in the conformational analysis of polypeptides. IV. Application of the electrostatically driven Monte Carlo method to the 20-residue membrane-bound portion of melittin.
    Ripoll DR; Scheraga HA
    Biopolymers; 1990; 30(1-2):165-76. PubMed ID: 2224048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical solvation models can be used to differentiate native from near-native conformations of bovine pancreatic trypsin inhibitor.
    Vila J; Williams RL; Vásquez M; Scheraga HA
    Proteins; 1991; 10(3):199-218. PubMed ID: 1715564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New developments of the electrostatically driven Monte Carlo method: test on the membrane-bound portion of melittin.
    Ripoll DR; Liwo A; Scheraga HA
    Biopolymers; 1998 Aug; 46(2):117-26. PubMed ID: 9664845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational analysis of the 20-residue membrane-bound portion of melittin by conformational space annealing.
    Lee J; Scheraga HA; Rackovsky S
    Biopolymers; 1998 Aug; 46(2):103-16. PubMed ID: 9664844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electrostatically driven Monte Carlo method: application to conformational analysis of decaglycine.
    Ripoll DR; Vásquez MJ; Scheraga HA
    Biopolymers; 1991 Feb; 31(3):319-30. PubMed ID: 1868160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Necessary conditions for avoiding incorrect polypeptide folds in conformational search by energy minimization.
    Vajda S; Jafri MS; Sezerman OU; DeLisi C
    Biopolymers; 1993 Jan; 33(1):173-92. PubMed ID: 8427934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of a 12-residue loop in bovine pancreatic trypsin inhibitor: effects of buried water.
    Carlacci L
    Biopolymers; 2001 Apr; 58(4):359-73. PubMed ID: 11180050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The loop problem in proteins: a Monte Carlo simulated annealing approach.
    Carlacci L; Englander SW
    Biopolymers; 1993 Aug; 33(8):1271-86. PubMed ID: 7689864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A continuum model for protein-protein interactions: application to the docking problem.
    Jackson RM; Sternberg MJ
    J Mol Biol; 1995 Jul; 250(2):258-75. PubMed ID: 7541840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of hierarchical multiple substates of a protein. III: Side chain and main chain local conformations.
    Noguti T; Go N
    Proteins; 1989; 5(2):113-24. PubMed ID: 2748575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo minimization with thermalization for global optimization of polypeptide conformations in cartesian coordinate space.
    Caflisch A; Niederer P; Anliker M
    Proteins; 1992 Sep; 14(1):102-9. PubMed ID: 1409559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refinement of the thrombin-bound structure of a hirudin peptide by a restrained electrostatically driven Monte Carlo method.
    Ripoll DR; Ni F
    Biopolymers; 1992 Apr; 32(4):359-65. PubMed ID: 1623131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of protein conformation by the build-up procedure. Application to bovine pancreatic trypsin inhibitor using limited simulated nuclear magnetic resonance data.
    Vásquez M; Scheraga HA
    J Biomol Struct Dyn; 1988 Feb; 5(4):705-55. PubMed ID: 2482758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The multiple-minima problem in the conformational analysis of polypeptides. III. An electrostatically driven Monte Carlo method: tests on enkephalin.
    Ripoll DR; Scheraga HA
    J Protein Chem; 1989 Apr; 8(2):263-87. PubMed ID: 2736043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of hierarchical multiple substates of a protein. I: Introduction.
    Noguti T; Go N
    Proteins; 1989; 5(2):97-103. PubMed ID: 2748581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins.
    Abagyan R; Totrov M
    J Mol Biol; 1994 Jan; 235(3):983-1002. PubMed ID: 8289329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable-target-function and build-up procedures for the calculation of protein conformation. Application to bovine pancreatic trypsin inhibitor using limited simulated nuclear magnetic resonance data.
    Vásquez M; Scheraga HA
    J Biomol Struct Dyn; 1988 Feb; 5(4):757-84. PubMed ID: 2482759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability of conformations at crystal contacts in BPTI represent true low-energy structures: correspondence among lattice packing and molecular dynamics structures.
    Kossiakoff AA; Randal M; Guenot J; Eigenbrot C
    Proteins; 1992 Sep; 14(1):65-74. PubMed ID: 1384033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.