These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 17155686)

  • 1. Laser-beam smoothing induced by stimulated brillouin scattering in an inhomogeneous plasma.
    Loiseau P; Morice O; Teychenné D; Casanova M; Hüller S; Pesme D
    Phys Rev Lett; 2006 Nov; 97(20):205001. PubMed ID: 17155686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crossed beam energy transfer between optically smoothed laser beams in inhomogeneous plasmas.
    Hüller S; Raj G; Luo M; Rozmus W; Pesme D
    Philos Trans A Math Phys Eng Sci; 2020 Nov; 378(2184):20200038. PubMed ID: 33040659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of spatial and temporal gains of stimulated brillouin and raman scattering by polarization smoothing.
    Fuchs J; Labaune C; Depierreux S; Baldis HA; Michard A
    Phys Rev Lett; 2000 Apr; 84(14):3089-92. PubMed ID: 11019019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Laser Beam Speckle Structure on Crossed Beam Energy Transfer via Beam Deflections and Ponderomotive Self-Focusing.
    Raj G; Hüller S
    Phys Rev Lett; 2017 Feb; 118(5):055002. PubMed ID: 28211711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of stimulated brillouin scattering by increased landau damping in multiple-ion-species hohlraum plasmas.
    Neumayer P; Berger RL; Divol L; Froula DH; London RA; Macgowan BJ; Meezan NB; Ross JS; Sorce C; Suter LJ; Glenzer SH
    Phys Rev Lett; 2008 Mar; 100(10):105001. PubMed ID: 18352195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent forward stimulated-brillouin scattering of a spatially incoherent laser beam in a plasma and its effect on beam spray.
    Grech M; Riazuelo G; Pesme D; Weber S; Tikhonchuk VT
    Phys Rev Lett; 2009 Apr; 102(15):155001. PubMed ID: 19518639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct measurements of an increased threshold for stimulated brillouin scattering with polarization smoothing in ignition hohlraum plasmas.
    Froula DH; Divol L; Berger RL; London RA; Meezan NB; Strozzi DJ; Neumayer P; Ross JS; Stagnitto S; Suter LJ; Glenzer SH
    Phys Rev Lett; 2008 Sep; 101(11):115002. PubMed ID: 18851289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma.
    Fuchs J; Labaune C; Depierreux S; Baldis HA; Michard A; James G
    Phys Rev Lett; 2001 Jan; 86(3):432-5. PubMed ID: 11177848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling stimulated brillouin backscatter with beam smoothing in weakly damped systems.
    Divol L
    Phys Rev Lett; 2007 Oct; 99(15):155003. PubMed ID: 17995176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of ion acoustic waves associated with plasma-induced incoherence of laser beams using Thomson scattering.
    Bandulet HC; Labaune C; Fuchs J; Michel P; Myatt J; Depierreux S; Baldis HA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056405. PubMed ID: 14682892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced spatiotemporal laser-beam smoothing in gas-jet plasmas.
    Malka V; Faure J; Hüller S; Tikhonchuk VT; Weber S; Amiranoff F
    Phys Rev Lett; 2003 Feb; 90(7):075002. PubMed ID: 12633235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saturation of backward stimulated scattering of a laser beam in the kinetic regime.
    Yin L; Albright BJ; Bowers KJ; Daughton W; Rose HA
    Phys Rev Lett; 2007 Dec; 99(26):265004. PubMed ID: 18233584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional modeling of stimulated Brillouin scattering in ignition-scale experiments.
    Divol L; Berger RL; Meezan NB; Froula DH; Dixit S; Suter LJ; Glenzer SH
    Phys Rev Lett; 2008 Jun; 100(25):255001. PubMed ID: 18643667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma.
    Moody JD; MacGowan BJ; Rothenberg JE; Berger RL; Divol L; Glenzer SH; Kirkwood RK; Williams EA; Young PE
    Phys Rev Lett; 2001 Mar; 86(13):2810-3. PubMed ID: 11290045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of spatial and temporal smoothing on stimulated brillouin scattering in the independent-hot-spot model limit.
    Mounaix P; Divol L; Huller S; Tikhonchuk VT
    Phys Rev Lett; 2000 Nov; 85(21):4526-9. PubMed ID: 11082587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Evidence of the Collective Brillouin Scattering of Multiple Laser Beams Sharing Acoustic Waves.
    Neuville C; Tassin V; Pesme D; Monteil MC; Masson-Laborde PE; Baccou C; Fremerye P; Philippe F; Seytor P; Teychenné D; Seka W; Katz J; Bahr R; Depierreux S
    Phys Rev Lett; 2016 Jun; 116(23):235002. PubMed ID: 27341238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multibeam stimulated brillouin scattering from hot, solid-target plasmas.
    Seka W; Baldis HA; Fuchs J; Regan SP; Meyerhofer DD; Stoeckl C; Yaakobi B; Craxton RS; Short RW
    Phys Rev Lett; 2002 Oct; 89(17):175002. PubMed ID: 12398677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced forward scattering in the case of two crossed laser beams interacting with a plasma.
    Labaune C; Baldis HA; Schifano E; Bauer BS; Maximov A; Ourdev I; Rozmus W; Pesme D
    Phys Rev Lett; 2000 Aug; 85(8):1658-61. PubMed ID: 10970582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a full aperture backscatter system for the Orion laser.
    Thomas P; Horsfield CJ; Girling MT; Heath S; Pitt SF; Oades K
    Rev Sci Instrum; 2024 Jul; 95(7):. PubMed ID: 39028910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beam Spray Thresholds in ICF-Relevant Plasmas.
    Turnbull D; Katz J; Hinkel DE; Michel P; Chapman T; Divol L; Kur E; MacLaren S; Milder AL; Rosen M; Shvydky A; Zimmerman GB; Froula DH
    Phys Rev Lett; 2022 Jul; 129(2):025001. PubMed ID: 35867466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.