These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 17155687)

  • 1. Bubble acceleration in the ablative Rayleigh-Taylor instability.
    Betti R; Sanz J
    Phys Rev Lett; 2006 Nov; 97(20):205002. PubMed ID: 17155687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Similar Multimode Bubble-Front Evolution of the Ablative Rayleigh-Taylor Instability in Two and Three Dimensions.
    Zhang H; Betti R; Yan R; Zhao D; Shvarts D; Aluie H
    Phys Rev Lett; 2018 Nov; 121(18):185002. PubMed ID: 30444419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF.
    Martinez DA; Smalyuk VA; Kane JO; Casner A; Liberatore S; Masse LP
    Phys Rev Lett; 2015 May; 114(21):215004. PubMed ID: 26066443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Late-time quadratic growth in single-mode Rayleigh-Taylor instability.
    Wei T; Livescu D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046405. PubMed ID: 23214698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear theory of the ablative Rayleigh-Taylor instability.
    Sanz J; Ramírez J; Ramis R; Betti R; Town RP
    Phys Rev Lett; 2002 Nov; 89(19):195002. PubMed ID: 12443120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilizing effect of anisotropic thermal diffusion on the ablative Rayleigh-Taylor instability.
    Masse L
    Phys Rev Lett; 2007 Jun; 98(24):245001. PubMed ID: 17677970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density.
    Yu CX; Xue C; Liu J; Hu XY; Liu YY; Ye WH; Wang LF; Wu JF; Fan ZF
    Phys Rev E; 2018 Jan; 97(1-1):013102. PubMed ID: 29448344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers.
    Goncharov VN
    Phys Rev Lett; 2002 Apr; 88(13):134502. PubMed ID: 11955101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ablation effects on weakly nonlinear Rayleigh-Taylor instability with a finite bandwidth.
    Ikegawa T; Nishihara K
    Phys Rev Lett; 2002 Sep; 89(11):115001. PubMed ID: 12225142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear Rayleigh-Taylor growth in converging geometry.
    Clark DS; Tabak M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):055302. PubMed ID: 16089591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of self-similar behavior of the 3D, nonlinear Rayleigh-Taylor instability.
    Sadot O; Smalyuk VA; Delettrez JA; Meyerhofer DD; Sangster TC; Betti R; Goncharov VN; Shvarts D
    Phys Rev Lett; 2005 Dec; 95(26):265001. PubMed ID: 16486364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of the stabilizing effect of a laminated ablator on the ablative Rayleigh-Taylor instability.
    Masse L; Casner A; Galmiche D; Huser G; Liberatore S; Theobald M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):055401. PubMed ID: 21728598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces.
    Clark DS; Tabak M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056308. PubMed ID: 16383746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of growth reduction of the deceleration-phase ablative Rayleigh-Taylor instability.
    Atzeni S; Temporal M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):057401. PubMed ID: 12786327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pure single-mode Rayleigh-Taylor instability for arbitrary Atwood numbers.
    Liu W; Wang X; Liu X; Yu C; Fang M; Ye W
    Sci Rep; 2020 Mar; 10(1):4201. PubMed ID: 32144289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of Rayleigh-Taylor instability under interface discontinuous acceleration induced by radiation.
    Hu ZX; Zhang YS; Tian BL
    Phys Rev E; 2020 Apr; 101(4-1):043115. PubMed ID: 32422729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas.
    Srinivasan B; Dimonte G; Tang XZ
    Phys Rev Lett; 2012 Apr; 108(16):165002. PubMed ID: 22680725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ablative stabilization of the deceleration phase rayleigh-taylor instability.
    Lobatchev V; Betti R
    Phys Rev Lett; 2000 Nov; 85(21):4522-5. PubMed ID: 11082586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability.
    Liang H; Li QX; Shi BC; Chai ZH
    Phys Rev E; 2016 Mar; 93(3):033113. PubMed ID: 27078453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of self-similarity in the magnetic fields generated by the ablative nonlinear Rayleigh-Taylor instability.
    Gao L; Nilson PM; Igumenschev IV; Fiksel G; Yan R; Davies JR; Martinez D; Smalyuk V; Haines MG; Blackman EG; Froula DH; Betti R; Meyerhofer DD
    Phys Rev Lett; 2013 May; 110(18):185003. PubMed ID: 23683208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.