These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

620 related articles for article (PubMed ID: 17155765)

  • 21. Formation of single-walled carbon nanotube via the interaction of graphene nanoribbons: ab initio density functional calculations.
    Du AJ; Smith SC; Lu GQ
    Nano Lett; 2007 Nov; 7(11):3349-54. PubMed ID: 17927259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of the edge type and strain on the structural, electronic and magnetic properties of the BNRs.
    Bhattacharyya S; Kawazoe Y; Singhl AK
    J Nanosci Nanotechnol; 2012 Mar; 12(3):1899-902. PubMed ID: 22754996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.
    Wu W; Lu P; Zhang Z; Guo W
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4787-95. PubMed ID: 22039765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boron and nitrogen impurities in SiC nanoribbons: an ab initio investigation.
    Costa CD; Morbec JM
    J Phys Condens Matter; 2011 May; 23(20):205504. PubMed ID: 21540516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Topological and Spectral Properties of Wavy Zigzag Nanoribbons.
    Arockiaraj M; Fiona JC; Kavitha SRJ; Shalini AJ; Balasubramanian K
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical study of core-loss electron energy-loss spectroscopy at graphene nanoribbon edges.
    Fujita N; Hasnip PJ; Probert MI; Yuan J
    J Phys Condens Matter; 2015 Aug; 27(30):305301. PubMed ID: 26173149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interrelation of Aromaticity and Conductivity of Graphene Dots/Antidots and Related Nanostructures.
    Zdetsis AD; Economou EN
    J Phys Chem C Nanomater Interfaces; 2016 Dec; 120(51):29463-29475. PubMed ID: 28127414
    [TBL] [Abstract][Full Text] [Related]  

  • 29. First-principles study of heat transport properties of graphene nanoribbons.
    Tan ZW; Wang JS; Gan CK
    Nano Lett; 2011 Jan; 11(1):214-9. PubMed ID: 21158401
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties.
    Xie L; Wang H; Jin C; Wang X; Jiao L; Suenaga K; Dai H
    J Am Chem Soc; 2011 Jul; 133(27):10394-7. PubMed ID: 21678963
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spin-orbit coupling effects on electronic structures in stanene nanoribbons.
    Xiong W; Xia C; Peng Y; Du J; Wang T; Zhang J; Jia Y
    Phys Chem Chem Phys; 2016 Mar; 18(9):6534-40. PubMed ID: 26865500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemically derived, ultrasmooth graphene nanoribbon semiconductors.
    Li X; Wang X; Zhang L; Lee S; Dai H
    Science; 2008 Feb; 319(5867):1229-32. PubMed ID: 18218865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons.
    Magda GZ; Jin X; Hagymási I; Vancsó P; Osváth Z; Nemes-Incze P; Hwang C; Biró LP; Tapasztó L
    Nature; 2014 Oct; 514(7524):608-11. PubMed ID: 25355361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries.
    Zhang A; Wu Y; Ke SH; Feng YP; Zhang C
    Nanotechnology; 2011 Oct; 22(43):435702. PubMed ID: 21967829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy gaps in supramolecular functionalized graphene nanoribbons.
    Nduwimana A; Wang XQ
    ACS Nano; 2009 Jul; 3(7):1995-9. PubMed ID: 19548689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors.
    Chen YC; de Oteyza DG; Pedramrazi Z; Chen C; Fischer FR; Crommie MF
    ACS Nano; 2013 Jul; 7(7):6123-8. PubMed ID: 23746141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.
    Alaal N; Medhekar N; Shukla A
    Phys Chem Chem Phys; 2018 Apr; 20(15):10345-10358. PubMed ID: 29610823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons.
    Li YY; Chen MX; Weinert M; Li L
    Nat Commun; 2014 Jul; 5():4311. PubMed ID: 24986261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimentally engineering the edge termination of graphene nanoribbons.
    Zhang X; Yazyev OV; Feng J; Xie L; Tao C; Chen YC; Jiao L; Pedramrazi Z; Zettl A; Louie SG; Dai H; Crommie MF
    ACS Nano; 2013 Jan; 7(1):198-202. PubMed ID: 23194280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges.
    Sun L; Wei P; Wei J; Sanvito S; Hou S
    J Phys Condens Matter; 2011 Oct; 23(42):425301. PubMed ID: 21969127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.