These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 17155814)

  • 1. Shape memory effect and superelasticity in a strain glass alloy.
    Wang Y; Ren X; Otsuka K
    Phys Rev Lett; 2006 Dec; 97(22):225703. PubMed ID: 17155814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation-Induced Creep and Creep Recovery of Shape Memory Alloy.
    Takeda K; Tobushi H; Pieczyska EA
    Materials (Basel); 2012 May; 5(5):909-921. PubMed ID: 28817016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonhysteretic superelasticity of shape memory alloys at the nanoscale.
    Zhang Z; Ding X; Sun J; Suzuki T; Lookman T; Otsuka K; Ren X
    Phys Rev Lett; 2013 Oct; 111(14):145701. PubMed ID: 24138254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Low-Cost Ni-Mn-Ti-B High-Temperature Shape Memory Alloy with Extraordinary Functional Properties.
    Li S; Cong D; Xiong W; Chen Z; Zhang X; Nie Z; Li S; Li R; Wang Y; Cao Y; Ren Y; Wang Y
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31870-31879. PubMed ID: 34210125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A jumping shape memory alloy under heat.
    Yang S; Omori T; Wang C; Liu Y; Nagasako M; Ruan J; Kainuma R; Ishida K; Liu X
    Sci Rep; 2016 Feb; 6():21754. PubMed ID: 26880700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale.
    Gómez-Cortés JF; Nó ML; López-Ferreño I; Hernández-Saz J; Molina SI; Chuvilin A; San Juan JM
    Nat Nanotechnol; 2017 Aug; 12(8):790-796. PubMed ID: 28553962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape memory alloys for medical applications.
    Gil FJ; Planell JA
    Proc Inst Mech Eng H; 1998; 212(6):473-88. PubMed ID: 9852742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Heat Treatment Temperature on Martensitic Transformation and Superelasticity of the Ti
    Li P; Wang Y; Meng F; Cao L; He Z
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31404952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct observation of hierarchical nucleation of martensite and size-dependent superelasticity in shape memory alloys.
    Liu L; Ding X; Li J; Lookman T; Sun J
    Nanoscale; 2014 Feb; 6(4):2067-72. PubMed ID: 24384687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Helium Nanobubbles Enhance Superelasticity and Retard Shear Localization in Small-Volume Shape Memory Alloy.
    Han WZ; Zhang J; Ding MS; Lv L; Wang WH; Wu GH; Shan ZW; Li J
    Nano Lett; 2017 Jun; 17(6):3725-3730. PubMed ID: 28489391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Transformation, Twinning, and Detwinning of NiTi Shape-Memory Alloy Subject to a Shock Wave Based on Molecular-Dynamics Simulation.
    Wang M; Jiang S; Zhang Y
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30469359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferrous polycrystalline shape-memory alloy showing huge superelasticity.
    Tanaka Y; Himuro Y; Kainuma R; Sutou Y; Omori T; Ishida K
    Science; 2010 Mar; 327(5972):1488-90. PubMed ID: 20299589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy-Efficient Elastocaloric Cooling by Flexibly and Reversibly Transferring Interface in Magnetic Shape-Memory Alloys.
    Li Y; Zhao D; Liu J; Qian S; Li Z; Gan W; Chen X
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25438-25445. PubMed ID: 29989401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A lightweight shape-memory magnesium alloy.
    Ogawa Y; Ando D; Sutou Y; Koike J
    Science; 2016 Jul; 353(6297):368-70. PubMed ID: 27463668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plastic deformation behaviour of single-crystalline martensite of Ti-Nb shape memory alloy.
    Tahara M; Okano N; Inamura T; Hosoda H
    Sci Rep; 2017 Nov; 7(1):15715. PubMed ID: 29146921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superelastic and shape memory properties of TixNb3Zr2Ta alloys.
    Zhu Y; Wang L; Wang M; Liu Z; Qin J; Zhang D; Lu W
    J Mech Behav Biomed Mater; 2012 Aug; 12():151-9. PubMed ID: 22732481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites.
    Zhang X; Zong H; Cui L; Fan X; Ding X; Sun J
    Sci Rep; 2017 Apr; 7():46360. PubMed ID: 28402321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of thermomechanical treatment on the superelasticity of Ti-7.5Nb-4Mo-2Sn biomedical alloy.
    Zhang DC; Tan CG; Tang DM; Zhang Y; Lin JG; Wen CE
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():76-86. PubMed ID: 25280682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Observation of Thermoelastic Martensitic Transformation of Cu-Al-Mn Cryogenic Shape Memory Alloy with Compressive Stress.
    Bian Z; Song J; Liu P; Wan F; Lei Y; Wang Q; Yang S; Zhan Q; Chen L; Wang J
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superelastic properties of biomedical (Ti-Zr)-Mo-Sn alloys.
    Ijaz MF; Kim HY; Hosoda H; Miyazaki S
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():11-20. PubMed ID: 25579891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.