These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17155863)

  • 21. The effect of walking speed on the gait of typically developing children.
    Schwartz MH; Rozumalski A; Trost JP
    J Biomech; 2008; 41(8):1639-50. PubMed ID: 18466909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomechanical mechanism for transitions in phase and frequency of arm and leg swing during walking.
    Kubo M; Wagenaar RC; Saltzman E; Holt KG
    Biol Cybern; 2004 Aug; 91(2):91-8. PubMed ID: 15351887
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new approach to detecting asymmetries in gait.
    Shorter KA; Polk JD; Rosengren KS; Hsiao-Wecksler ET
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):459-67. PubMed ID: 18242805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinematic and kinetic gait characteristics of normal children walking at a range of clinically relevant speeds.
    van der Linden ML; Kerr AM; Hazlewood ME; Hillman SJ; Robb JE
    J Pediatr Orthop; 2002; 22(6):800-6. PubMed ID: 12409911
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities.
    Geyer H; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2010 Jun; 18(3):263-73. PubMed ID: 20378480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved gait recognition by gait dynamics normalization.
    Liu Z; Sarkar S
    IEEE Trans Pattern Anal Mach Intell; 2006 Jun; 28(6):863-76. PubMed ID: 16724582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of an unstable shoe construction on lower extremity gait characteristics.
    Nigg B; Hintzen S; Ferber R
    Clin Biomech (Bristol, Avon); 2006 Jan; 21(1):82-8. PubMed ID: 16209901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Separating the effects of age and walking speed on gait variability.
    Kang HG; Dingwell JB
    Gait Posture; 2008 May; 27(4):572-7. PubMed ID: 17768055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of cadence on energy generation and absorption at lower extremity joints during gait.
    Teixeira-Salmela LF; Nadeau S; Milot MH; Gravel D; Requião LF
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):769-78. PubMed ID: 18384921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantifying rearfoot-forefoot coordination in human walking.
    Chang R; Van Emmerik R; Hamill J
    J Biomech; 2008 Oct; 41(14):3101-5. PubMed ID: 18778823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tracking the motion of hidden segments using kinematic constraints and Kalman filtering.
    Halvorsen K; Johnston C; Back W; Stokes V; Lanshammar H
    J Biomech Eng; 2008 Feb; 130(1):011012. PubMed ID: 18298188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. VI.1. Gait analysis and synthesis: biomechanics, orthotics, prosthetics.
    Matjacić Z
    Stud Health Technol Inform; 2010; 152():323-42. PubMed ID: 20407202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A three-dimensional kinematic and dynamic study of the lower limb during the stance phase of gait using an homogeneous matrix approach.
    Doriot N; Chèze L
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):21-7. PubMed ID: 14723490
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparison of subtalar joint motion during anticipated medial cutting turns and level walking using a multi-segment foot model.
    Jenkyn TR; Shultz R; Giffin JR; Birmingham TB
    Gait Posture; 2010 Feb; 31(2):153-8. PubMed ID: 19897368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A quantitative gait assessment method based on energy exchange analysis during walking: a normal gait study.
    Gider F; Matjacić Z; Bajd T
    J Med Eng Technol; 2005; 29(2):90-4. PubMed ID: 15804858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multidimensional EMG-based assessment of walking dynamics.
    Jansen BH; Miller VH; Mavrofrides DC; Stegink Jansen CW
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):294-300. PubMed ID: 14518794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data.
    Thelen DG; Anderson FC
    J Biomech; 2006; 39(6):1107-15. PubMed ID: 16023125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decoding sensory feedback from firing rates of afferent ensembles recorded in cat dorsal root ganglia in normal locomotion.
    Weber DJ; Stein RB; Everaert DG; Prochazka A
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):240-3. PubMed ID: 16792303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Feature extraction via KPCA for classification of gait patterns.
    Wu J; Wang J; Liu L
    Hum Mov Sci; 2007 Jun; 26(3):393-411. PubMed ID: 17509708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement of lower extremity kinematics during level walking.
    Kadaba MP; Ramakrishnan HK; Wootten ME
    J Orthop Res; 1990 May; 8(3):383-92. PubMed ID: 2324857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.