These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 17156209)

  • 1. Glutamatergic activity modulates the phase-shifting effects of gastrin-releasing peptide and light.
    Kallingal GJ; Mintz EM
    Eur J Neurosci; 2006 Nov; 24(10):2853-8. PubMed ID: 17156209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An NMDA antagonist inhibits light but not GRP-induced phase shifts when administered after the phase-shifting stimulus.
    Kallingal GJ; Mintz EM
    Brain Res; 2010 Sep; 1353():106-12. PubMed ID: 20682305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of photic shifts with the 5-HT1A mixed agonist/antagonist NAN-190: intra-suprachiasmatic nucleus pathway.
    Sterniczuk R; Stepkowski A; Jones M; Antle MC
    Neuroscience; 2008 May; 153(3):571-80. PubMed ID: 18406538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of constant light on circadian clock resetting by photic and nonphotic stimuli in Syrian hamsters.
    Landry GJ; Mistlberger RE
    Brain Res; 2005 Oct; 1059(1):52-8. PubMed ID: 16169532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gastrin releasing peptide and neuropeptide Y exert opposing actions on circadian phase.
    Kallingal GJ; Mintz EM
    Neurosci Lett; 2007 Jul; 422(1):59-63. PubMed ID: 17597298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the role of substance P in photic responses of the circadian system: individual and combined actions with gastrin-releasing peptide.
    Sterniczuk R; Colijn MA; Nunez M; Antle MC
    Neuropharmacology; 2010 Jan; 58(1):277-85. PubMed ID: 19540856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific effects of gastrin-releasing peptide in the suprachiasmatic nucleus.
    Kallingal GJ; Mintz EM
    Eur J Neurosci; 2014 Feb; 39(4):630-9. PubMed ID: 24528136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gastrin-releasing peptide induces c-Fos in the hamster suprachiasmatic nucleus.
    Piggins HD; Goguen D; Rusak B
    Neurosci Lett; 2005 Aug; 384(3):205-10. PubMed ID: 15955628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of NMDA receptors in the suprachiasmatic nucleus produces light-like phase shifts of the circadian clock in vivo.
    Mintz EM; Marvel CL; Gillespie CF; Price KM; Albers HE
    J Neurosci; 1999 Jun; 19(12):5124-30. PubMed ID: 10366645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase delays to light and gastrin-releasing peptide require the protein kinase A pathway.
    Sterniczuk R; Yamakawa GR; Pomeroy T; Antle MC
    Neurosci Lett; 2014 Jan; 559():24-9. PubMed ID: 24287375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered photic and non-photic phase shifts in 5-HT(1A) receptor knockout mice.
    Smith VM; Sterniczuk R; Phillips CI; Antle MC
    Neuroscience; 2008 Dec; 157(3):513-23. PubMed ID: 18930788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dark pulse suppression of P-ERK and c-Fos in the hamster suprachiasmatic nuclei.
    Coogan AN; Piggins HD
    Eur J Neurosci; 2005 Jul; 22(1):158-68. PubMed ID: 16029205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-term constant light potentiation of large-magnitude circadian phase shifts induced by 8-OH-DPAT: effects on serotonin receptors and gene expression in the hamster suprachiasmatic nucleus.
    Duncan MJ; Franklin KM; Davis VA; Grossman GH; Knoch ME; Glass JD
    Eur J Neurosci; 2005 Nov; 22(9):2306-14. PubMed ID: 16262668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABAergic regulation of light-induced c-Fos immunoreactivity within the suprachiasmatic nucleus.
    Gillespie CF; Van Der Beek EM; Mintz EM; Mickley NC; Jasnow AM; Huhman KL; Albers HE
    J Comp Neurol; 1999 Sep; 411(4):683-92. PubMed ID: 10421877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serotonergic potentiation of dark pulse-induced phase-shifting effects at midday in hamsters.
    Mendoza J; Clesse D; PĂ©vet P; Challet E
    J Neurochem; 2008 Aug; 106(3):1404-14. PubMed ID: 18498439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is Fos expression necessary and sufficient to mediate light-induced phase advances of the suprachiasmatic circadian oscillator?
    Rea MA; Michel AM; Lutton LM
    J Biol Rhythms; 1993; 8 Suppl():S59-64. PubMed ID: 8274763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serotonin1A autoreceptor activation by S 15535 enhances circadian activity rhythms in hamsters: evaluation of potential interactions with serotonin2A and serotonin2C receptors.
    Gannon RL; Millan MJ
    Neuroscience; 2006; 137(1):287-99. PubMed ID: 16289351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME; Gobes SM; Pavlovska I; Su C; Mistlberger RE; Glass JD
    Eur J Neurosci; 2004 May; 19(10):2779-90. PubMed ID: 15147311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the phase shifting effects of gastrin releasing peptide when microinjected into the suprachiasmatic region.
    Albers HE; Gillespie CF; Babagbemi TO; Huhman KL
    Neurosci Lett; 1995 May; 191(1-2):63-6. PubMed ID: 7659293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The corticotropin-releasing factor (CRF)(1) receptor antagonists CP154,526 and DMP695 inhibit light-induced phase advances of hamster circadian activity rhythms.
    Gannon RL; Millan MJ
    Brain Res; 2006 Apr; 1083(1):96-102. PubMed ID: 16551464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.