These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17156787)

  • 1. Biomechanical capabilities influence postural control strategies in the cat hindlimb.
    McKay JL; Burkholder TJ; Ting LH
    J Biomech; 2007; 40(10):2254-60. PubMed ID: 17156787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional constraint of endpoint force emerges from hindlimb anatomy.
    Bunderson NE; McKay JL; Ting LH; Burkholder TJ
    J Exp Biol; 2010 Jun; 213(Pt 12):2131-41. PubMed ID: 20511528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional muscle synergies constrain force production during postural tasks.
    McKay JL; Ting LH
    J Biomech; 2008; 41(2):299-306. PubMed ID: 17980370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanical actions of muscles predict the direction of muscle activation during postural perturbations in the cat hindlimb.
    Honeycutt CF; Nichols TR
    J Neurophysiol; 2014 Mar; 111(5):900-7. PubMed ID: 24304861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic postural responses in the cat: responses of hindlimb muscles to horizontal perturbations of stance in multiple directions.
    Rushmer DS; Moore SP; Windus SL; Russell CJ
    Exp Brain Res; 1988; 71(1):93-102. PubMed ID: 3416962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter-joint coupling effects on muscle contributions to endpoint force and acceleration in a musculoskeletal model of the cat hindlimb.
    van Antwerp KW; Burkholder TJ; Ting LH
    J Biomech; 2007; 40(16):3570-9. PubMed ID: 17640652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The decerebrate cat generates the essential features of the force constraint strategy.
    Honeycutt CF; Nichols TR
    J Neurophysiol; 2010 Jun; 103(6):3266-73. PubMed ID: 20089811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of ground reaction forces by hindlimb muscles during cat locomotion.
    Kaya M; Leonard TR; Herzog W
    J Biomech; 2006; 39(15):2752-66. PubMed ID: 16310793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionally complex muscles of the cat hindlimb. III. Differential activation within biceps femoris during postural perturbations.
    Chanaud CM; Macpherson JM
    Exp Brain Res; 1991; 85(2):271-80. PubMed ID: 1893980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two functional muscle groupings during postural equilibrium tasks in standing cats.
    Jacobs R; Macpherson JM
    J Neurophysiol; 1996 Oct; 76(4):2402-11. PubMed ID: 8899613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies that simplify the control of quadrupedal stance. I. Forces at the ground.
    Macpherson JM
    J Neurophysiol; 1988 Jul; 60(1):204-17. PubMed ID: 3404217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining feasible bounds on muscle activation in a redundant biomechanical task: practical implications of redundancy.
    Sohn MH; McKay JL; Ting LH
    J Biomech; 2013 Apr; 46(7):1363-8. PubMed ID: 23489436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in a postural strategy with inter-paw distance.
    Macpherson JM
    J Neurophysiol; 1994 Mar; 71(3):931-40. PubMed ID: 8201433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weight support and balance during perturbed stance in the chronic spinal cat.
    Macpherson JM; Fung J
    J Neurophysiol; 1999 Dec; 82(6):3066-81. PubMed ID: 10601442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanical action of proprioceptive length feedback in a model of cat hindlimb.
    Burkholder TJ; Nicols TR
    Motor Control; 2000 Apr; 4(2):201-20. PubMed ID: 11508248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic postural responses in the cat: responses to headward and tailward translation.
    Rushmer DS; Russell CJ; macpherson J; Phillips JO; Dunbar DC
    Exp Brain Res; 1983; 50(1):45-61. PubMed ID: 6641850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mathematical model of the hindlimbs control during cat locomotion with balance].
    Lyakhovetskii VA; Gorskii OV; Gerasimenko YP; Musienko PE
    Ross Fiziol Zh Im I M Sechenova; 2015 Feb; 101(2):200-13. PubMed ID: 26012112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of stance width on multidirectional postural responses.
    Henry SM; Fung J; Horak FB
    J Neurophysiol; 2001 Feb; 85(2):559-70. PubMed ID: 11160493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromyographic responses from the hindlimb muscles of the decerebrate cat to horizontal support surface perturbations.
    Honeycutt CF; Gottschall JS; Nichols TR
    J Neurophysiol; 2009 Jun; 101(6):2751-61. PubMed ID: 19321638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
    Trank TV; Chen C; Smith JL
    J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.