BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 17157001)

  • 21. Growth model and metabolic activity of brewing yeast biofilm on the surface of spent grains: a biocatalyst for continuous beer fermentation.
    Brányik T; Vicente AA; Kuncová G; Podrazký O; Dostálek P; Teixeira JA
    Biotechnol Prog; 2004; 20(6):1733-40. PubMed ID: 15575706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of process variables for minimization of byproduct formation during fermentation of blackstrap molasses to ethanol at industrial scale.
    Arshad M; Khan ZM; Khalil-ur-Rehman ; Shah FA; Rajoka MI
    Lett Appl Microbiol; 2008 Nov; 47(5):410-4. PubMed ID: 19146530
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parameter oscillation attenuation and mechanism exploration for continuous VHG ethanol fermentation.
    Bai FW; Ge XM; Anderson WA; Moo-Young M
    Biotechnol Bioeng; 2009 Jan; 102(1):113-21. PubMed ID: 18949752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Agar immobilized yeast cells in tubular reactor for ethanol production.
    Nigam JN; Gogoi BK; Bezbaruah RL
    Indian J Exp Biol; 1998 Aug; 36(8):816-9. PubMed ID: 9838885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different agitation speeds.
    Farid MA; El-Enshasy HA; Noor El-Deen AM
    J Basic Microbiol; 2002; 42(3):162-71. PubMed ID: 12111743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of ethanol by alginate-entrapped Saccharomyces cerevisiae strain "14-12".
    Youssef KA; Ghareib M; Khalil AA
    Indian J Exp Biol; 1989 Feb; 27(2):121-3. PubMed ID: 2680928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simplified modeling of fed-batch alcoholic fermentation of sugarcane blackstrap molasses.
    Converti A; Arni S; Sato S; de Carvalho JC; Aquarone E
    Biotechnol Bioeng; 2003 Oct; 84(1):88-95. PubMed ID: 12910547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploitation of olive oil mill wastewaters and molasses for ethanol production using immobilized cells of Saccharomyces cerevisiae.
    Nikolaou A; Kourkoutas Y
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7401-7408. PubMed ID: 29280099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of fructose and ethanol from sugar beet molasses using Saccharomyces cerevisiae ATCC 36858.
    Atiyeh H; Duvnjak Z
    Biotechnol Prog; 2002; 18(2):234-9. PubMed ID: 11934290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-temperature brewing using yeast immobilized on dried figs.
    Bekatorou A; Sarellas A; Ternan NG; Mallouchos A; Komaitis M; Koutinas AA; Kanellaki M
    J Agric Food Chem; 2002 Dec; 50(25):7249-57. PubMed ID: 12452640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Volatile compounds of wines produced by cells immobilized on grape skins.
    Mallouchos A; Skandamis P; Loukatos P; Komaitis M; Koutinas A; Kanellaki M
    J Agric Food Chem; 2003 May; 51(10):3060-6. PubMed ID: 12720392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scale-up of extremely low temperature fermentations of grape must by wheat supported yeast cells.
    Kandylis P; Drouza C; Bekatorou A; Koutinas AA
    Bioresour Technol; 2010 Oct; 101(19):7484-91. PubMed ID: 20483597
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scaling up of ethanol production from sugar molasses using yeast immobilized with alginate-based MCM-41 mesoporous zeolite composite carrier.
    Zheng C; Sun X; Li L; Guan N
    Bioresour Technol; 2012 Jul; 115():208-14. PubMed ID: 22154581
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae.
    He X; Guo X; Liu N; Zhang B
    Appl Microbiol Biotechnol; 2007 May; 75(1):55-60. PubMed ID: 17225097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of yeast immobilization on bioethanol production.
    Borovikova D; Scherbaka R; Patmalnieks A; Rapoport A
    Biotechnol Appl Biochem; 2014; 61(1):33-9. PubMed ID: 24180336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Process optimization for continuous ethanol fermentation by alginate-immobilized cells of Saccharomyces cerevisiae HAU-1.
    Yadav BS; Rani U; Dhamija SS; Nigam P; Singh D
    J Basic Microbiol; 1996; 36(3):205-10. PubMed ID: 8676283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetics and thermodynamics of ethanol production by a thermotolerant mutant of Saccharomyces cerevisiae in a microprocessor-controlled bioreactor.
    Rajoka MI; Ferhan M; Khalid AM
    Lett Appl Microbiol; 2005; 40(5):316-21. PubMed ID: 15836732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution of volatile byproducts during wine fermentations using immobilized cells on grape skins.
    Mallouchos A; Komaitis M; Koutinas A; Kanellaki M
    J Agric Food Chem; 2003 Apr; 51(8):2402-8. PubMed ID: 12670188
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oenococcus oeni cells immobilized on delignified cellulosic material for malolactic fermentation of wine.
    Agouridis N; Kopsahelis N; Plessas S; Koutinas AA; Kanellaki M
    Bioresour Technol; 2008 Dec; 99(18):9017-20. PubMed ID: 18501594
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-temperature ethanol fermentation by immobilized coculture of Kluyveromyces marxianus and Saccharomyces cerevisiae.
    Eiadpum A; Limtong S; Phisalaphong M
    J Biosci Bioeng; 2012 Sep; 114(3):325-9. PubMed ID: 22608995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.