These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 17157262)

  • 1. Structures of the Ca2+-ATPase complexes with ATP, AMPPCP and AMPPNP. An FTIR study.
    Krasteva M; Barth A
    Biochim Biophys Acta; 2007 Jan; 1767(1):114-23. PubMed ID: 17157262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural changes of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding studied by fourier transform infrared spectroscopy.
    von Germar F; Barth A; Mäntele W
    Biophys J; 2000 Mar; 78(3):1531-40. PubMed ID: 10692337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TNP-AMP binding to the sarcoplasmic reticulum Ca(2+)-ATPase studied by infrared spectroscopy.
    Liu M; Barth A
    Biophys J; 2003 Nov; 85(5):3262-70. PubMed ID: 14581226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of the sarcoplasmic reticulum Ca(2+)-ATPase from ATP and ATP analogs studied by infrared spectroscopy.
    Liu M; Barth A
    J Biol Chem; 2004 Nov; 279(48):49902-9. PubMed ID: 15381702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-Induced phosphorylation of the sarcoplasmic reticulum Ca2+ ATPase: molecular interpretation of infrared difference spectra.
    Barth A; Mäntele W
    Biophys J; 1998 Jul; 75(1):538-44. PubMed ID: 9649416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of phosphate groups of ATP and Aspartyl phosphate with the sarcoplasmic reticulum Ca2+-ATPase: an FTIR study.
    Liu M; Krasteva M; Barth A
    Biophys J; 2005 Dec; 89(6):4352-63. PubMed ID: 16169973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The average conformation at micromolar [Ca2+] of Ca2+-atpase with bound nucleotide differs from that adopted with the transition state analog ADP.AlFx or with AMPPCP under crystallization conditions at millimolar [Ca2+].
    Picard M; Toyoshima C; Champeil P
    J Biol Chem; 2005 May; 280(19):18745-54. PubMed ID: 15757892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concerted conformational effects of Ca2+ and ATP are required for activation of sequential reactions in the Ca2+ ATPase (SERCA) catalytic cycle.
    Inesi G; Lewis D; Ma H; Prasad A; Toyoshima C
    Biochemistry; 2006 Nov; 45(46):13769-78. PubMed ID: 17105196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The modulation of Ca2+ binding to sarcoplasmic reticulum ATPase by ATP analogues is pH-dependent.
    Mintz E; Mata AM; Forge V; Passafiume M; Guillain F
    J Biol Chem; 1995 Nov; 270(45):27160-4. PubMed ID: 7592971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of allosteric regulation of the Ca,Mg-ATPase of sarcoplasmic reticulum: studies with 5'-adenylyl methylenediphosphate.
    Cable MB; Feher JJ; Briggs FN
    Biochemistry; 1985 Sep; 24(20):5612-9. PubMed ID: 2934090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes of protein structure, nucleotide microenvironment, and Ca(2+)-binding states in the catalytic cycle of sarcoplasmic reticulum Ca(2+)-ATPase: investigation of nucleotide binding, phosphorylation and phosphoenzyme conversion by FTIR difference spectroscopy.
    Barth A; Kreutz W; Mäntele W
    Biochim Biophys Acta; 1994 Aug; 1194(1):75-91. PubMed ID: 8075144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ADP and AMPPNP on the hydrogen-deuterium exchange kinetics in Ca2+, Mg2+-ATpase of sarcoplasmic reticulum.
    Anzai K; Kirino Y; Shimizu H
    J Biochem; 1981 Aug; 90(2):349-54. PubMed ID: 6117550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational transitions of the sarcoplasmic reticulum Ca-ATPase studied by time-resolved EPR and quenched-flow kinetics.
    Mahaney JE; Froehlich JP; Thomas DD
    Biochemistry; 1995 Apr; 34(14):4864-79. PubMed ID: 7718593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping nucleotide binding site of calcium ATPase with IR spectroscopy: effects of ATP gamma-phosphate binding.
    Liu M; Barth A
    Biopolymers; 2002; 67(4-5):267-70. PubMed ID: 12012444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved infrared spectroscopy of the Ca2+-ATPase. The enzyme at work.
    Barth A; von Germar F; Kreutz W; Mäntele W
    J Biol Chem; 1996 Nov; 271(48):30637-46. PubMed ID: 8940039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved charge translocation by the Ca-ATPase from sarcoplasmic reticulum after an ATP concentration jump.
    Hartung K; Froehlich JP; Fendler K
    Biophys J; 1997 Jun; 72(6):2503-14. PubMed ID: 9168027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping interactions between the Ca2+-ATPase and its substrate ATP with infrared spectroscopy.
    Liu M; Barth A
    J Biol Chem; 2003 Mar; 278(12):10112-8. PubMed ID: 12538577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the calcium pump with a bound ATP analogue.
    Toyoshima C; Mizutani T
    Nature; 2004 Jul; 430(6999):529-35. PubMed ID: 15229613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ versus Mg2+ coordination at the nucleotide-binding site of the sarcoplasmic reticulum Ca2+-ATPase.
    Picard M; Jensen AM; Sørensen TL; Champeil P; Møller JV; Nissen P
    J Mol Biol; 2007 Apr; 368(1):1-7. PubMed ID: 17335848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a general method to observe the phosphate groups of phosphoenzymes with infrared spectroscopy.
    Karjalainen EL; Hardell A; Barth A
    Biophys J; 2006 Sep; 91(6):2282-9. PubMed ID: 16798809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.