These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 17157285)

  • 1. Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart.
    Maier LS; Bers DM
    Cardiovasc Res; 2007 Mar; 73(4):631-40. PubMed ID: 17157285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure.
    Ai X; Curran JW; Shannon TR; Bers DM; Pogwizd SM
    Circ Res; 2005 Dec; 97(12):1314-22. PubMed ID: 16269653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes.
    Kohlhaas M; Zhang T; Seidler T; Zibrova D; Dybkova N; Steen A; Wagner S; Chen L; Brown JH; Bers DM; Maier LS
    Circ Res; 2006 Feb; 98(2):235-44. PubMed ID: 16373600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+/calmodulin-dependent protein kinase: a key component in the contractile recovery from acidosis.
    Mattiazzi A; Vittone L; Mundiña-Weilenmann C
    Cardiovasc Res; 2007 Mar; 73(4):648-56. PubMed ID: 17222810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CaMKII inhibition protects against necrosis and apoptosis in irreversible ischemia-reperfusion injury.
    Vila-Petroff M; Salas MA; Said M; Valverde CA; Sapia L; Portiansky E; Hajjar RJ; Kranias EG; Mundiña-Weilenmann C; Mattiazzi A
    Cardiovasc Res; 2007 Mar; 73(4):689-98. PubMed ID: 17217936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calmodulin regulation of excitation-contraction coupling in cardiac myocytes.
    Yang D; Song LS; Zhu WZ; Chakir K; Wang W; Wu C; Wang Y; Xiao RP; Chen SR; Cheng H
    Circ Res; 2003 Apr; 92(6):659-67. PubMed ID: 12609973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calmodulin kinase II inhibition shortens action potential duration by upregulation of K+ currents.
    Li J; Marionneau C; Zhang R; Shah V; Hell JW; Nerbonne JM; Anderson ME
    Circ Res; 2006 Nov; 99(10):1092-9. PubMed ID: 17038644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of cardiac Na(+) and Ca(2+) currents by CaM and CaMKII.
    Wagner S; Maier LS
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S26-S33. PubMed ID: 16686679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CaMKIIdelta overexpression in hypertrophy and heart failure: cellular consequences for excitation-contraction coupling.
    Maier LS
    Braz J Med Biol Res; 2005 Sep; 38(9):1293-302. PubMed ID: 16138211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects on recovery during acidosis in cardiac myocytes overexpressing CaMKII.
    Sag CM; Dybkova N; Neef S; Maier LS
    J Mol Cell Cardiol; 2007 Dec; 43(6):696-709. PubMed ID: 17950750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure.
    Zhang T; Brown JH
    Cardiovasc Res; 2004 Aug; 63(3):476-86. PubMed ID: 15276473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in the heart.
    Maier LS
    Adv Exp Med Biol; 2012; 740():685-702. PubMed ID: 22453965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure.
    Nakamura TY; Iwata Y; Arai Y; Komamura K; Wakabayashi S
    Circ Res; 2008 Oct; 103(8):891-9. PubMed ID: 18776042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The calcium/calmodulin/kinase system and arrhythmogenic afterdepolarizations in bradycardia-related acquired long-QT syndrome.
    Qi X; Yeh YH; Chartier D; Xiao L; Tsuji Y; Brundel BJ; Kodama I; Nattel S
    Circ Arrhythm Electrophysiol; 2009 Jun; 2(3):295-304. PubMed ID: 19808480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms underlying rate-dependent remodeling of transient outward potassium current in canine ventricular myocytes.
    Xiao L; Coutu P; Villeneuve LR; Tadevosyan A; Maguy A; Le Bouter S; Allen BG; Nattel S
    Circ Res; 2008 Sep; 103(7):733-42. PubMed ID: 18723449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure.
    Yeh YH; Wakili R; Qi XY; Chartier D; Boknik P; Kääb S; Ravens U; Coutu P; Dobrev D; Nattel S
    Circ Arrhythm Electrophysiol; 2008 Jun; 1(2):93-102. PubMed ID: 19808399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CaM or cAMP: linking beta-adrenergic stimulation to 'leaky' RyRs.
    Sipido KR
    Circ Res; 2007 Feb; 100(3):296-8. PubMed ID: 17307967
    [No Abstract]   [Full Text] [Related]  

  • 18. Roles of cardiac ryanodine receptor in heart failure and sudden cardiac death.
    Phrommintikul A; Chattipakorn N
    Int J Cardiol; 2006 Sep; 112(2):142-52. PubMed ID: 16701909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct roles of CaM and Ca(2+)/CaM -dependent protein kinase II in Ca(2+) -dependent facilitation and inactivation of cardiac L-type Ca(2+) channels.
    Nie HG; Hao LY; Xu JJ; Minobe E; Kameyama A; Kameyama M
    J Physiol Sci; 2007 Jun; 57(3):167-73. PubMed ID: 17511897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein kinase A-dependent phosphorylation of ryanodine receptors increases Ca2+ leak in mouse heart.
    Morimoto S; O-Uchi J; Kawai M; Hoshina T; Kusakari Y; Komukai K; Sasaki H; Hongo K; Kurihara S
    Biochem Biophys Res Commun; 2009 Dec; 390(1):87-92. PubMed ID: 19781523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.