These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 17157332)

  • 1. Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity.
    Hedges DJ; Deininger PL
    Mutat Res; 2007 Mar; 616(1-2):46-59. PubMed ID: 17157332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nomadic genetic elements contribute to oncogenic translocations: Implications in carcinogenesis.
    Dhivya S; Premkumar K
    Crit Rev Oncol Hematol; 2016 Feb; 98():81-93. PubMed ID: 26548742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionizing radiation and genetic risks XIV. Potential research directions in the post-genome era based on knowledge of repair of radiation-induced DNA double-strand breaks in mammalian somatic cells and the origin of deletions associated with human genomic disorders.
    Sankaranarayanan K; Wassom JS
    Mutat Res; 2005 Oct; 578(1-2):333-70. PubMed ID: 16084534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous transposable elements as silencers, enhancers and targets of meiotic recombination.
    Underwood CJ; Choi K
    Chromosoma; 2019 Sep; 128(3):279-296. PubMed ID: 31332531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome.
    Konkel MK; Batzer MA
    Semin Cancer Biol; 2010 Aug; 20(4):211-21. PubMed ID: 20307669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gross deletions involving IGHM, BTK, or Artemis: a model for genomic lesions mediated by transposable elements.
    van Zelm MC; Geertsema C; Nieuwenhuis N; de Ridder D; Conley ME; Schiff C; Tezcan I; Bernatowska E; Hartwig NG; Sanders EA; Litzman J; Kondratenko I; van Dongen JJ; van der Burg M
    Am J Hum Genet; 2008 Feb; 82(2):320-32. PubMed ID: 18252213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The main repair pathways of double-strand breaks in the genomic DNA and interactions between them].
    Litvinov SV
    Tsitol Genet; 2014; 48(3):64-77. PubMed ID: 25019146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of a citrus meiotic recombination TTC-repeat motif in the formation of gross deletions generated by ionizing radiation and MULE activation.
    Terol J; Ibañez V; Carbonell J; Alonso R; Estornell LH; Licciardello C; Gut IG; Dopazo J; Talon M
    BMC Genomics; 2015 Feb; 16(1):69. PubMed ID: 25758634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Widespread occurrence of power-law distributions in inter-repeat distances shaped by genome dynamics.
    Klimopoulos A; Sellis D; Almirantis Y
    Gene; 2012 May; 499(1):88-98. PubMed ID: 22370293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Trickster in the genome: contribution and control of transposable elements.
    Nakayashiki H
    Genes Cells; 2011 Aug; 16(8):827-41. PubMed ID: 21722269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Highly sensitive systems for experimental insertional mutagenesis in repair-deficient genetic environment in Drosophila melanogaster: new opportunities for studying postreplication repair of double-stranded DNA breaks and mechanisms of transposable element migration].
    Chmuzh EV; Shestakova LA; Volkova VS; Zakharov IK
    Genetika; 2007 Jan; 43(1):52-60. PubMed ID: 17333939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Causes of genome instability.
    Aguilera A; García-Muse T
    Annu Rev Genet; 2013; 47():1-32. PubMed ID: 23909437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-homologous end-joining for repairing I-SceI-induced DNA double strand breaks in human cells.
    Honma M; Sakuraba M; Koizumi T; Takashima Y; Sakamoto H; Hayashi M
    DNA Repair (Amst); 2007 Jun; 6(6):781-8. PubMed ID: 17296333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of alu elements to mutagenic DNA double-strand break repair.
    Morales ME; White TB; Streva VA; DeFreece CB; Hedges DJ; Deininger PL
    PLoS Genet; 2015 Mar; 11(3):e1005016. PubMed ID: 25761216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA REPAIR. Mus81 and converging forks limit the mutagenicity of replication fork breakage.
    Mayle R; Campbell IM; Beck CR; Yu Y; Wilson M; Shaw CA; Bjergbaek L; Lupski JR; Ira G
    Science; 2015 Aug; 349(6249):742-7. PubMed ID: 26273056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altering Genomic Integrity: Heavy Metal Exposure Promotes Transposable Element-Mediated Damage.
    Morales ME; Servant G; Ade C; Roy-Engel AM
    Biol Trace Elem Res; 2015 Jul; 166(1):24-33. PubMed ID: 25774044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic alterations upon integration of zebrafish L1 elements revealed by the TANT method.
    Ichiyanagi K; Okada N
    Gene; 2006 Nov; 383():108-16. PubMed ID: 17049188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in mechanisms of genetic instability related to hereditary neurological diseases.
    Wells RD; Dere R; Hebert ML; Napierala M; Son LS
    Nucleic Acids Res; 2005; 33(12):3785-98. PubMed ID: 16006624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repression of transposable-elements - a microRNA anti-cancer defense mechanism?
    Shalgi R; Pilpel Y; Oren M
    Trends Genet; 2010 Jun; 26(6):253-9. PubMed ID: 20417576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insertion sequence inversions mediated by ectopic recombination between terminal inverted repeats.
    Ling A; Cordaux R
    PLoS One; 2010 Dec; 5(12):e15654. PubMed ID: 21187977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.