These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 17157350)
1. Heavy metal toxicity to Lemna minor: studies on the time dependence of growth inhibition and the recovery after exposure. Drost W; Matzke M; Backhaus T Chemosphere; 2007 Feb; 67(1):36-43. PubMed ID: 17157350 [TBL] [Abstract][Full Text] [Related]
2. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Megateli S; Semsari S; Couderchet M Ecotoxicol Environ Saf; 2009 Sep; 72(6):1774-80. PubMed ID: 19505721 [TBL] [Abstract][Full Text] [Related]
3. Comparison of different biological methods for the assessment of ecotoxicological risks. Fenske C; Daeschlein G; Günther B; Knauer A; Rudolph P; Schwahn C; Adrian V; von Woedtke T; Rossberg H; Jülich WD; Kramer A Int J Hyg Environ Health; 2006 May; 209(3):275-84. PubMed ID: 16459144 [TBL] [Abstract][Full Text] [Related]
4. A novel response of wild-type duckweed (Lemna paucicostata Hegelm.) to heavy metals. Li T; Xiong Z Environ Toxicol; 2004 Apr; 19(2):95-102. PubMed ID: 15037994 [TBL] [Abstract][Full Text] [Related]
5. Toxicity assessment of heavy metal mixtures by Lemna minor L. Horvat T; Vidaković-Cifrek Z; Orescanin V; Tkalec M; Pevalek-Kozlina B Sci Total Environ; 2007 Oct; 384(1-3):229-38. PubMed ID: 17610935 [TBL] [Abstract][Full Text] [Related]
6. Response of Pistia stratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous. Mufarrege MM; Hadad HR; Maine MA Arch Environ Contam Toxicol; 2010 Jan; 58(1):53-61. PubMed ID: 19506937 [TBL] [Abstract][Full Text] [Related]
7. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Basile A; Sorbo S; Conte B; Cobianchi RC; Trinchella F; Capasso C; Carginale V Int J Phytoremediation; 2012 Apr; 14(4):374-87. PubMed ID: 22567718 [TBL] [Abstract][Full Text] [Related]
8. Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model. Hatano A; Shoji R Environ Toxicol; 2008 Jun; 23(3):372-8. PubMed ID: 18214895 [TBL] [Abstract][Full Text] [Related]
9. Effects of herbicides on Lemna gibba and recovery from damage after prolonged exposure. Mohammad M; Itoh K; Suyama K Arch Environ Contam Toxicol; 2010 Apr; 58(3):605-12. PubMed ID: 20094883 [TBL] [Abstract][Full Text] [Related]
10. Bioassays for evaluating the water-extractable genotoxic and toxic potential of soils polluted by metal smelters. Vidic T; Lah B; Berden-Zrimec M; Marinsek-Logar R Environ Toxicol; 2009 Oct; 24(5):472-83. PubMed ID: 18973278 [TBL] [Abstract][Full Text] [Related]
11. Growth and photosynthetic responses of Lemna minor L. exposed to cadmium in combination with zinc or copper. Vidaković-Cifrek Ž; Tkalec M; Šikić S; Tolić S; Lepeduš H; Pevalek-Kozlina B Arh Hig Rada Toksikol; 2015 Jun; 66(2):141-52. PubMed ID: 26110476 [TBL] [Abstract][Full Text] [Related]
12. Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Appenroth KJ; Krech K; Keresztes A; Fischer W; Koloczek H Chemosphere; 2010 Jan; 78(3):216-23. PubMed ID: 19945735 [TBL] [Abstract][Full Text] [Related]
13. Assessment of toxic interactions of heavy metals in a multicomponent mixture using Lepidium sativum and Spirodela polyrrhiza. Montvydiene D; Marciulioniene D Environ Toxicol; 2004 Aug; 19(4):351-8. PubMed ID: 15269907 [TBL] [Abstract][Full Text] [Related]
14. Changes in growth, biochemical components, and antioxidant activity in aquatic plant Wolffia arrhiza (Lemnaceae) exposed to cadmium and lead. Piotrowska A; Bajguz A; Godlewska-Zyłkiewicz B; Zambrzycka E Arch Environ Contam Toxicol; 2010 Apr; 58(3):594-604. PubMed ID: 19834638 [TBL] [Abstract][Full Text] [Related]
15. Transversal immission patterns and leachability of heavy metals in road side soils. Hjortenkrans DS; Bergbäck BG; Häggerud AV J Environ Monit; 2008 Jun; 10(6):739-46. PubMed ID: 18528541 [TBL] [Abstract][Full Text] [Related]
16. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related]
17. Use of the biotic ligand model to predict pulse-exposure toxicity of copper to fathead minnows (Pimephales promelas). Meyer JS; Boese CJ; Morris JM Aquat Toxicol; 2007 Aug; 84(2):268-78. PubMed ID: 17659358 [TBL] [Abstract][Full Text] [Related]
18. Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Pomati F; Netting AG; Calamari D; Neilan BA Aquat Toxicol; 2004 May; 67(4):387-96. PubMed ID: 15084414 [TBL] [Abstract][Full Text] [Related]
19. Toxic effect of arsenate and cadmium alone and in combination on giant duckweed (Spirodela polyrrhiza L.) in response to its accumulation. Seth CS; Chaturvedi PK; Misra V Environ Toxicol; 2007 Dec; 22(6):539-49. PubMed ID: 18000854 [TBL] [Abstract][Full Text] [Related]
20. Effects of low-dose perinatal cadmium exposure on tissue zinc and copper concentrations in neonatal mice and on the reproductive development of female offspring. Ishitobi H; Watanabe C Toxicol Lett; 2005 Oct; 159(1):38-46. PubMed ID: 15894438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]