These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17157382)

  • 1. Sediment toxicity tests involving immobilized microalgae (Phaeodactylum tricornutum Bohlin).
    Moreno-Garrido I; Lubián LM; Blasco J
    Environ Int; 2007 May; 33(4):481-5. PubMed ID: 17157382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity of surfactants to green microalgae Pseudokirchneriella subcapitata and Scenedesmus subspicatus and to marine diatoms Phaeodactylum tricornutum and Skeletonema costatum.
    Pavlić Z; Vidaković-Cifrek Z; Puntarić D
    Chemosphere; 2005 Dec; 61(8):1061-8. PubMed ID: 16263376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different responses of the marine diatom Phaeodactylum tricornutum to copper toxicity.
    Reiriz S; Cid A; Torres E; Abalde J; Herrero C
    Microbiologia; 1994 Sep; 10(3):263-72. PubMed ID: 7873102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of marine benthic diatoms in a growth inhibition test with spiked whole-sediment.
    Mauffret A; Moreno-Garrido I; Blasco J
    Ecotoxicol Environ Saf; 2010 Mar; 73(3):262-9. PubMed ID: 20031213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A phytochelatin-based bioassay in marine diatoms useful for the assessment of bioavailability of heavy metals released by polluted sediments.
    Morelli E; Marangi ML; Fantozzi L
    Environ Int; 2009 Apr; 35(3):532-8. PubMed ID: 18973945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of Ni2+,Co2+, Zn2+, Cd2+ and Hg2+ on the growth rate of marine diatom Phaeodactylum tricornutum Bohlin: microplate growth inhibition test.
    Horvatić J; Persić V
    Bull Environ Contam Toxicol; 2007 Nov; 79(5):494-8. PubMed ID: 17943218
    [No Abstract]   [Full Text] [Related]  

  • 7. Ring test for whole-sediment toxicity assay with -a- benthic marine diatom.
    Araújo CV; Tornero V; Lubián LM; Blasco J; van Bergeijk SA; Cañavate P; Cid A; Franco D; Prado R; Bartual A; López MG; Ribeiro R; Moreira-Santos M; Torreblanca A; Jurado B; Moreno-Garrido I
    Sci Total Environ; 2010 Jan; 408(4):822-8. PubMed ID: 19906403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the response of three microalgae species exposed to elutriates of estuarine sediments based on growth and chemical speciation.
    Mucha AP; Leal MF; Bordalo AA; Vasconcelos MT
    Environ Toxicol Chem; 2003 Mar; 22(3):576-85. PubMed ID: 12627645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal mobility and toxicity to microalgae associated with acidification of sediments: CO2 and acid comparison.
    De Orte MR; Lombardi AT; Sarmiento AM; Basallote MD; Rodriguez-Romero A; Riba I; Del Valls A
    Mar Environ Res; 2014 May; 96():136-44. PubMed ID: 24148229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sediment integrative assessment of the Bay of Cádiz (Spain): an ecotoxicological and chemical approach.
    Araújo CV; Diz FR; Laiz I; Lubián LM; Blasco J; Moreno-Garrido I
    Environ Int; 2009 Aug; 35(6):831-41. PubMed ID: 19318227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochelatins in the diatom Phaeodactylum tricornutum Bohlin: an evaluation of their use as biomarkers of metal exposure in marine waters.
    Morelli E; Fantozzi L
    Bull Environ Contam Toxicol; 2008 Sep; 81(3):236-41. PubMed ID: 18575794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction in growth rate in Phaeodactylum tricornutum (Bacillariophyceae) and Dunaliella tertiolecta (Chlorophyceae) induced by UV-B radiation.
    Andreasson KI; Wängberg SK
    J Photochem Photobiol B; 2007 Mar; 86(3):227-33. PubMed ID: 17141518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Species-specific sensitivity of three microalgae to sediment elutriates.
    Gallo A; Guida M; Armiento G; Siciliano A; Mormile N; Carraturo F; Pellegrini D; Morroni L; Tosti E; Ferrante MI; Montresor M; Molisso F; Sacchi M; Danovaro R; Lofrano G; Libralato G
    Mar Environ Res; 2020 Apr; 156():104901. PubMed ID: 32056796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microphytobenthos in ecotoxicology: a review of the use of marine benthic diatoms in bioassays.
    Araújo CV; Blasco J; Moreno-Garrido I
    Environ Int; 2010 Aug; 36(6):637-46. PubMed ID: 20493528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute toxicity of LAS homologues in marine microalgae: esterase activity and inhibition growth as endpoints of toxicity.
    Hampel M; Moreno-Garrido I; Sobrino C; Lubián LM; Blasco J
    Ecotoxicol Environ Saf; 2001 Mar; 48(3):287-92. PubMed ID: 11222038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and application of whole-sediment toxicity test using immobilized freshwater microalgae Pseudokirchneriella subcapitata.
    Zhang LJ; Ying GG; Chen F; Zhao JL; Wang L; Fang YX
    Environ Toxicol Chem; 2012 Feb; 31(2):377-86. PubMed ID: 22065399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicological effects of CdSe nanocrystals on the marine diatom Phaeodactylum tricornutum: The first mass spectrometry-based proteomic approach.
    Poirier I; Pallud M; Kuhn L; Hammann P; Demortière A; Jamali A; Chicher J; Caplat C; Gallon RK; Bertrand M
    Ecotoxicol Environ Saf; 2018 May; 152():78-90. PubMed ID: 29407785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in situ assay with the microalga Phaeodactylum tricornutum for sediment-overlying water toxicity evaluations in estuaries.
    Moreira SM; Guilhermino L; Ribeiro R
    Environ Toxicol Chem; 2006 Sep; 25(9):2272-9. PubMed ID: 16986780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium alginate immobilized marine microalgae: experiments on growth and short-term heavy metal accumulation.
    Moreno-Garrido I; Campana O; Lubián LM; Blasco J
    Mar Pollut Bull; 2005; 51(8-12):823-9. PubMed ID: 16026804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marine polyphosphate: a key player in geologic phosphorus sequestration.
    Diaz J; Ingall E; Benitez-Nelson C; Paterson D; de Jonge MD; McNulty I; Brandes JA
    Science; 2008 May; 320(5876):652-5. PubMed ID: 18451299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.