These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 17157523)

  • 1. Monte Carlo simulation of cutaneous reflectance and fluorescence measurements--the effect of melanin contents and localization.
    Chen R; Huang Z; Lui H; Hamzavi I; McLean DI; Xie S; Zeng H
    J Photochem Photobiol B; 2007 Mar; 86(3):219-26. PubMed ID: 17157523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic assessment of dermal melanin using blue vitiligo as an in vivo model.
    Hamzavi I; Shiff N; Martinka M; Huang Z; McLean D; Zeng H; Lui H
    Photodermatol Photoimmunol Photomed; 2006 Feb; 22(1):46-51. PubMed ID: 16436181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An objective assessment of melanin in vitiligo skin treated with Balneo PUVA therapy.
    Hegyi V; Petrovajová M; Novotný M
    Skin Res Technol; 2014 Feb; 20(1):108-15. PubMed ID: 23800185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of near infrared autofluorescence measurements of in vivo skin.
    Wang S; Zhao J; Lui H; He Q; Zeng H
    J Photochem Photobiol B; 2011 Dec; 105(3):183-9. PubMed ID: 21945055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The impact of blood content in skin tissue on skin spectra].
    Huang BH; Chen R; Zeng HS; Wang YY; Xie SS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jan; 27(1):95-8. PubMed ID: 17390659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments.
    Zhong X; Wen X; Zhu D
    Opt Express; 2014 Jan; 22(2):1852-64. PubMed ID: 24515194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation of latanoprost induced iris darkening.
    Cracknell KP; Farnell DJ; Grierson I
    Comput Methods Programs Biomed; 2007 Aug; 87(2):93-103. PubMed ID: 17576020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multilayer modeling of reflectance pulse oximetry.
    Reuss JL
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):153-9. PubMed ID: 15709652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo modeling for implantable fluorescent analyte sensors.
    McShane MJ; Rastegar S; Pishko M; Coté GL
    IEEE Trans Biomed Eng; 2000 May; 47(5):624-32. PubMed ID: 10851806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skin and cutaneous melanocytic lesion simulation in biomedical optics with multilayered phantoms.
    Urso P; Lualdi M; Colombo A; Carrara M; Tomatis S; Marchesini R
    Phys Med Biol; 2007 May; 52(10):N229-39. PubMed ID: 17473339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depth profile of diffuse reflectance near-infrared spectroscopy for measurement of water content in skin.
    Arimoto H; Egawa M; Yamada Y
    Skin Res Technol; 2005 Feb; 11(1):27-35. PubMed ID: 15691256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Monte Carlo study of the chlorophyll fluorescence emission and its effect on the leaf spectral reflectance and transmittance under various conditions.
    Susila P; Naus J
    Photochem Photobiol Sci; 2007 Aug; 6(8):894-902. PubMed ID: 17668120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling and validation of spectral reflectance for the colon.
    Hidović-Rowe D; Claridge E
    Phys Med Biol; 2005 Mar; 50(6):1071-93. PubMed ID: 15798309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive spectral imaging of skin chromophores based on multiple regression analysis aided by Monte Carlo simulation.
    Nishidate I; Wiswadarma A; Hase Y; Tanaka N; Maeda T; Niizeki K; Aizu Y
    Opt Lett; 2011 Aug; 36(16):3239-41. PubMed ID: 21847220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance.
    Yudovsky D; Pilon L
    Appl Opt; 2010 Apr; 49(10):1707-19. PubMed ID: 20357850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo near-infrared autofluorescence imaging of pigmented skin lesions: methods, technical improvements and preliminary clinical results.
    Wang S; Zhao J; Lui H; He Q; Zeng H
    Skin Res Technol; 2013 Feb; 19(1):20-6. PubMed ID: 22724585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation.
    Zagaynova EV; Shirmanova MV; Kirillin MY; Khlebtsov BN; Orlova AG; Balalaeva IV; Sirotkina MA; Bugrova ML; Agrba PD; Kamensky VA
    Phys Med Biol; 2008 Sep; 53(18):4995-5009. PubMed ID: 18711247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation of a computed tomography x-ray tube.
    Bazalova M; Verhaegen F
    Phys Med Biol; 2007 Oct; 52(19):5945-55. PubMed ID: 17881811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamics of laser-induced changes in human skin autofluorescence--experimental measurements and theoretical modeling.
    Zeng H; MacAulay C; McLean DI; Palcic B; Lui H
    Photochem Photobiol; 1998 Aug; 68(2):227-36. PubMed ID: 9723216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique.
    Zhu C; Palmer GM; Breslin TM; Harter J; Ramanujam N
    Lasers Surg Med; 2006 Aug; 38(7):714-24. PubMed ID: 16799981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.