BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 17157549)

  • 1. Methods for mapping protease specificity.
    Diamond SL
    Curr Opin Chem Biol; 2007 Feb; 11(1):46-51. PubMed ID: 17157549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of efficiently cleaved substrates for HIV-1 protease using a phage display library and use in inhibitor development.
    Beck ZQ; Hervio L; Dawson PE; Elder JH; Madison EL
    Virology; 2000 Sep; 274(2):391-401. PubMed ID: 10964781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixture-based peptide libraries for identifying protease cleavage motifs.
    Turk BE
    Methods Mol Biol; 2009; 539():79-91. PubMed ID: 19377969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PNA-encoded protease substrate microarrays.
    Winssinger N; Damoiseaux R; Tully DC; Geierstanger BH; Burdick K; Harris JL
    Chem Biol; 2004 Oct; 11(10):1351-60. PubMed ID: 15489162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity based fingerprinting of proteases using FRET peptides.
    Sun H; Panicker RC; Yao SQ
    Biopolymers; 2007; 88(2):141-9. PubMed ID: 17206627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites.
    Schilling O; Overall CM
    Nat Biotechnol; 2008 Jun; 26(6):685-94. PubMed ID: 18500335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a novel peptide substrate of HSV-1 protease using substrate phage display.
    O'Boyle DR; Pokornowski KA; McCann PJ; Weinheimer SP
    Virology; 1997 Sep; 236(2):338-47. PubMed ID: 9325241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protease proteomics: revealing protease in vivo functions using systems biology approaches.
    Doucet A; Overall CM
    Mol Aspects Med; 2008 Oct; 29(5):339-58. PubMed ID: 18571712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protease degradomics: mass spectrometry discovery of protease substrates and the CLIP-CHIP, a dedicated DNA microarray of all human proteases and inhibitors.
    Overall CM; Tam EM; Kappelhoff R; Connor A; Ewart T; Morrison CJ; Puente X; López-Otín C; Seth A
    Biol Chem; 2004 Jun; 385(6):493-504. PubMed ID: 15255181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two novel targeting peptide degrading proteases, PrePs, in mitochondria and chloroplasts, so similar and still different.
    Ståhl A; Nilsson S; Lundberg P; Bhushan S; Biverståhl H; Moberg P; Morisset M; Vener A; Mäler L; Langel U; Glaser E
    J Mol Biol; 2005 Jun; 349(4):847-60. PubMed ID: 15893767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mRNA-display-based selections for proteins with desired functions: a protease-substrate case study.
    Valencia CA; Cotten SW; Dong B; Liu R
    Biotechnol Prog; 2008; 24(3):561-9. PubMed ID: 18471027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rearrangement of terminal amino acid residues in peptides by protease-catalyzed intramolecular transpeptidation.
    Fodor S; Zhang Z
    Anal Biochem; 2006 Sep; 356(2):282-90. PubMed ID: 16859627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protease specificity profiling by tandem mass spectrometry using proteome-derived peptide libraries.
    Schilling O; auf dem Keller U; Overall CM
    Methods Mol Biol; 2011; 753():257-72. PubMed ID: 21604128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A broad-spectrum fluorescence-based peptide library for the rapid identification of protease substrates.
    Thomas DA; Francis P; Smith C; Ratcliffe S; Ede NJ; Kay C; Wayne G; Martin SL; Moore K; Amour A; Hooper NM
    Proteomics; 2006 Apr; 6(7):2112-20. PubMed ID: 16479534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary optimization of peptide substrates for proteases that exhibit rapid hydrolysis kinetics.
    Boulware KT; Jabaiah A; Daugherty PS
    Biotechnol Bioeng; 2010 Jun; 106(3):339-46. PubMed ID: 20148412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global analysis of proteasomal substrate specificity using positional-scanning libraries of covalent inhibitors.
    Nazif T; Bogyo M
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):2967-72. PubMed ID: 11248015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural-like function in artificial WW domains.
    Russ WP; Lowery DM; Mishra P; Yaffe MB; Ranganathan R
    Nature; 2005 Sep; 437(7058):579-83. PubMed ID: 16177795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of exosite occupancy on the substrate specificity of thrombin.
    Ng NM; Quinsey NS; Matthews AY; Kaiserman D; Wijeyewickrema LC; Bird PI; Thompson PE; Pike RN
    Arch Biochem Biophys; 2009 Sep; 489(1-2):48-54. PubMed ID: 19638274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Reverse degradomics", monitoring of proteolytic trimming by multi-CE and confocal detection of fluorescent substrates and reaction products.
    Piccard H; Hu J; Fiten P; Proost P; Martens E; Van den Steen PE; Van Damme J; Opdenakker G
    Electrophoresis; 2009 Jul; 30(13):2366-77. PubMed ID: 19621364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane protease degradomics: proteomic identification and quantification of cell surface protease substrates.
    Butler GS; Dean RA; Smith D; Overall CM
    Methods Mol Biol; 2009; 528():159-76. PubMed ID: 19153692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.