These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1715773)

  • 1. The collagen fibril--a model system for studying the staining and fixation of a protein.
    Chapman JA; Tzaphlidou M; Meek KM; Kadler KE
    Electron Microsc Rev; 1990; 3(1):143-82. PubMed ID: 1715773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutaraldehyde-induced changes in the axially projected fine structure of collagen fibrils.
    Meek KM; Chapman JA
    J Mol Biol; 1985 Sep; 185(2):359-70. PubMed ID: 2414449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The staining pattern of collagen fibrils. Improved correlation with sequence data.
    Meek KM; Chapman JA; Hardcastle RA
    J Biol Chem; 1979 Nov; 254(21):10710-4. PubMed ID: 91606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axial structure of the heterotypic collagen fibrils of vitreous humour and cartilage.
    Bos KJ; Holmes DF; Kadler KE; McLeod D; Morris NP; Bishop PN
    J Mol Biol; 2001 Mar; 306(5):1011-22. PubMed ID: 11237615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlations between amino acid hydrophobicity scales and stain exclusion capacity of type 1 collagen fibrils.
    Ortolani F; Raspanti M; Marchini M
    J Electron Microsc (Tokyo); 1994 Feb; 43(1):32-8. PubMed ID: 11407414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of fixation by combination of glutaraldehyde/dimethyl suberimidate. Use of collagen as a model system.
    Tzaphlidou M
    J Histochem Cytochem; 1983 Nov; 31(11):1274-8. PubMed ID: 6194203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for type II collagen fibrils: distinctive D-band patterns in native and reconstituted fibrils compared with sequence data for helix and telopeptide domains.
    Ortolani F; Giordano M; Marchini M
    Biopolymers; 2000 Nov; 54(6):448-63. PubMed ID: 10951330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further evidence for the correlation between the primary structure and the stain exclusion banding pattern of the segment-long-spacing crystallites of collagen.
    Kobayashi K; Hashimoto Y; Hayakawa T; Hoshino T
    J Ultrastruct Mol Struct Res; 1988 Sep; 100(3):255-62. PubMed ID: 2468721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier analysis of electron micrographs of positively stained collagen fibrils: application to type I and II collagen typing.
    Ronzière MC; Herbage B; Herbage D; Bernengo JC
    Int J Biol Macromol; 1998 Oct; 23(3):207-13. PubMed ID: 9777708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron microscopy shows periodic structure in collagen fibril cross sections.
    Hulmes DJ; Jesior JC; Miller A; Berthet-Colominas C; Wolff C
    Proc Natl Acad Sci U S A; 1981 Jun; 78(6):3567-71. PubMed ID: 6943556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycation changes the charge distribution of type I collagen fibrils.
    Hadley JC; Meek KM; Malik NS
    Glycoconj J; 1998 Aug; 15(8):835-40. PubMed ID: 9870360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative staining and genesis of D-periodicity in native collagen fibrils.
    Ortolani F; Raspanti M; Marchini M
    Eur J Basic Appl Histochem; 1991; 35(1):45-60. PubMed ID: 1713789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deposition of apatite in mineralizing vertebrate extracellular matrices: A model of possible nucleation sites on type I collagen.
    Silver FH; Landis WJ
    Connect Tissue Res; 2011 Jun; 52(3):242-54. PubMed ID: 21405976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron microscopic visualization of collagen aggregates without chemical staining.
    Kobayashi K; Niwa J; Hoshino T; Nagatani T
    J Electron Microsc (Tokyo); 1992 Aug; 41(4):235-41. PubMed ID: 1431671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormal collagen fibril structure as studied by electron microscopy.
    Tzaphlidou M
    Electron Microsc Rev; 1992; 5(1):25-35. PubMed ID: 1370381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equivalent stiffness after glycosaminoglycan depletion in tendon--an ultra-structural finite element model and corresponding experiments.
    Fessel G; Snedeker JG
    J Theor Biol; 2011 Jan; 268(1):77-83. PubMed ID: 20950629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translational control of collagen fibrillogenesis in mineralizing cultures of chick osteoblasts.
    Gerstenfeld LC; Riva A; Hodgens K; Eyre DR; Landis WJ
    J Bone Miner Res; 1993 Sep; 8(9):1031-43. PubMed ID: 8237472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The staining pattern of collagen fibrils. I. An analysis of electron micrographs.
    Chapman JA
    Connect Tissue Res; 1974; 2(2):137-50. PubMed ID: 4138005
    [No Abstract]   [Full Text] [Related]  

  • 19. Quantitative analysis of the mechanism of negative staining with native collagen fibrils and polar tropomyosin paracrystals.
    Katayama E; Nonomura Y
    J Biochem; 1979 Nov; 86(5):1495-509. PubMed ID: 521442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution analysis of the modified quarter-stagger model of the collagen fibril.
    Bruns RR; Gross J
    Biopolymers; 1974 May; 13(5):931-41. PubMed ID: 4136772
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.