BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 17157897)

  • 1. Tolerance of Antarctic soil fungi to hydrocarbons.
    Hughes KA; Bridge P; Clark MS
    Sci Total Environ; 2007 Jan; 372(2-3):539-48. PubMed ID: 17157897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil.
    Baraniecki CA; Aislabie J; Foght JM
    Microb Ecol; 2002 Jan; 43(1):44-54. PubMed ID: 11984628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica.
    Stallwood B; Shears J; Williams PA; Hughes KA
    J Appl Microbiol; 2005; 99(4):794-802. PubMed ID: 16162230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation.
    Stroud JL; Paton GI; Semple KT
    J Appl Microbiol; 2007 May; 102(5):1239-53. PubMed ID: 17448159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of hexadecane-utilizing soil-microorganisms for growth on hexadecanol, hexadecanal and hexadecanoic acid as sole sources of carbon and energy.
    Dashti N; Al-Awadhi H; Khanafer M; Abdelghany S; Radwan S
    Chemosphere; 2008 Jan; 70(3):475-9. PubMed ID: 17675208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada.
    April TM; Foght JM; Currah RS
    Can J Microbiol; 2000 Jan; 46(1):38-49. PubMed ID: 10696470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrocarbon-utilizing microorganisms naturally associated with sawdust.
    Ali N; Eliyas M; Al-Sarawi H; Radwan SS
    Chemosphere; 2011 May; 83(9):1268-72. PubMed ID: 21507457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The influence of diesel fuel oil on the number of bacteria, fungi, actinomycetes and soil microbial biomass].
    Michalcewicz W
    Rocz Panstw Zakl Hig; 1995; 46(1):91-7. PubMed ID: 7481509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil.
    Serrano A; Gallego M; González JL; Tejada M
    Environ Pollut; 2008 Feb; 151(3):494-502. PubMed ID: 17555854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity.
    Guo H; Yao J; Cai M; Qian Y; Guo Y; Richnow HH; Blake RE; Doni S; Ceccanti B
    Chemosphere; 2012 Jun; 87(11):1273-80. PubMed ID: 22336736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil.
    Luz AP; Pellizari VH; Whyte LG; Greer CW
    Can J Microbiol; 2004 May; 50(5):323-33. PubMed ID: 15213740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrocarbon bioremediation potential of an unimpacted Kuwaiti oil-field environment.
    Obuekwe C; Hourani G; Radwan S
    Acta Microbiol Pol; 2003; 52(4):405-17. PubMed ID: 15095928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of aliphatic and aromatic hydrocarbons at high temperatures.
    Feitkenhauer H; Märkl H
    Water Sci Technol; 2003; 47(10):123-30. PubMed ID: 12862226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exophiala macquariensis sp. nov., a cold adapted black yeast species recovered from a hydrocarbon contaminated sub-Antarctic soil.
    Zhang C; Sirijovski N; Adler L; Ferrari BC
    Fungal Biol; 2019 Feb; 123(2):151-158. PubMed ID: 30709520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial community response to a release of neat ethanol onto residual hydrocarbons in a pilot-scale aquifer tank.
    Cápiro NL; Da Silva ML; Stafford BP; Rixey WG; Alvarez PJ
    Environ Microbiol; 2008 Sep; 10(9):2236-44. PubMed ID: 18484998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms.
    Chaillan F; Le Flèche A; Bury E; Phantavong YH; Grimont P; Saliot A; Oudot J
    Res Microbiol; 2004 Sep; 155(7):587-95. PubMed ID: 15313261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial community response to petroleum hydrocarbon contamination in the unsaturated zone at the experimental field site Vaerløse, Denmark.
    Kaufmann K; Christophersen M; Buttler A; Harms H; Höhener P
    FEMS Microbiol Ecol; 2004 Jun; 48(3):387-99. PubMed ID: 19712308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation of hydrocarbon contaminants in subantarctic soils: an effective management option.
    Bramley-Alves J; Wasley J; King CK; Powell S; Robinson SA
    J Environ Manage; 2014 Sep; 142():60-9. PubMed ID: 24836716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nickel on the mineralization of hydrocarbons by indigenous microbiota in Kuwait soils.
    Al-Saleh ES; Obuekwe C
    J Basic Microbiol; 2009 Jun; 49(3):256-63. PubMed ID: 19219899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of evaporation and biodegradation of fuel spills in Antarctica. I. A chemical approach using GC-FID.
    Snape I; Harvey PM; Ferguson SH; Rayner JL; Revill AT
    Chemosphere; 2005 Dec; 61(10):1485-94. PubMed ID: 15990148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.