BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 17158094)

  • 1. Expression of Dll4 and CCL25 in Foxn1-negative epithelial cells in the post-natal thymus.
    Itoi M; Tsukamoto N; Amagai T
    Int Immunol; 2007 Feb; 19(2):127-32. PubMed ID: 17158094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lack of Delta like 1 and 4 expressions in nude thymus anlages.
    Tsukamoto N; Itoi M; Nishikawa M; Amagai T
    Cell Immunol; 2005 Apr; 234(2):77-80. PubMed ID: 16095582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of a functional thymus initiated by a postnatal epithelial progenitor cell.
    Bleul CC; Corbeaux T; Reuter A; Fisch P; Mönting JS; Boehm T
    Nature; 2006 Jun; 441(7096):992-6. PubMed ID: 16791198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lessons from thymic epithelial heterogeneity: FoxN1 and tissue-restricted gene expression by extrathymic, endodermally derived epithelium.
    Dooley J; Erickson M; Farr AG
    J Immunol; 2009 Oct; 183(8):5042-9. PubMed ID: 19786540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nude thymic rudiment lacking functional foxn1 resembles respiratory epithelium.
    Dooley J; Erickson M; Roelink H; Farr AG
    Dev Dyn; 2005 Aug; 233(4):1605-12. PubMed ID: 15986478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Foxn1-dependent transcripts PCOLCE2 and mPPP1R16B are not required for normal thymopoiesis.
    Heinzel K; Bleul CC
    Eur J Immunol; 2007 Sep; 37(9):2562-71. PubMed ID: 17683113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A domain of Foxn1 required for crosstalk-dependent thymic epithelial cell differentiation.
    Su DM; Navarre S; Oh WJ; Condie BG; Manley NR
    Nat Immunol; 2003 Nov; 4(11):1128-35. PubMed ID: 14528302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delta-like 4 is indispensable in thymic environment specific for T cell development.
    Hozumi K; Mailhos C; Negishi N; Hirano K; Yahata T; Ando K; Zuklys S; Holländer GA; Shima DT; Habu S
    J Exp Med; 2008 Oct; 205(11):2507-13. PubMed ID: 18824583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontogeny of thymic cortical epithelial cells expressing the thymoproteasome subunit β5t.
    Ripen AM; Nitta T; Murata S; Tanaka K; Takahama Y
    Eur J Immunol; 2011 May; 41(5):1278-87. PubMed ID: 21469133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thymic cysts originate from Foxn1 positive thymic medullary epithelium.
    Vroegindeweij E; Crobach S; Itoi M; Satoh R; Zuklys S; Happe C; Germeraad WT; Cornelissen JJ; Cupedo T; Holländer GA; Kawamoto H; van Ewijk W
    Mol Immunol; 2010 Feb; 47(5):1106-13. PubMed ID: 19945167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesenchymal cells are required for functional development of thymic epithelial cells.
    Itoi M; Tsukamoto N; Yoshida H; Amagai T
    Int Immunol; 2007 Aug; 19(8):953-64. PubMed ID: 17625108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regeneration of the adult thymus is preceded by the expansion of K5+K8+ epithelial cell progenitors and by increased expression of Trp63, cMyc and Tcf3 transcription factors in the thymic stroma.
    Popa I; Zubkova I; Medvedovic M; Romantseva T; Mostowski H; Boyd R; Zaitseva M
    Int Immunol; 2007 Nov; 19(11):1249-60. PubMed ID: 17823311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute ablation of DP thymocytes induces up-regulation of IL-22 and Foxn1 in TECs.
    Pan B; Liu J; Zhang Y; Sun Y; Wu Q; Zhao K; Zeng L; Xu K
    Clin Immunol; 2014 Jan; 150(1):101-8. PubMed ID: 24333537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Notch activation in thymic epithelial cells induces development of thymic microenvironments.
    Masuda K; Germeraad WT; Satoh R; Itoi M; Ikawa T; Minato N; Katsura Y; van Ewijk W; Kawamoto H
    Mol Immunol; 2009 May; 46(8-9):1756-67. PubMed ID: 19250680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors regulating stem cell recruitment to the fetal thymus.
    Wilkinson B; Owen JJ; Jenkinson EJ
    J Immunol; 1999 Apr; 162(7):3873-81. PubMed ID: 10201905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lack of Foxp3 function and expression in the thymic epithelium.
    Liston A; Farr AG; Chen Z; Benoist C; Mathis D; Manley NR; Rudensky AY
    J Exp Med; 2007 Mar; 204(3):475-80. PubMed ID: 17353370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilized beta-catenin in thymic epithelial cells blocks thymus development and function.
    Zuklys S; Gill J; Keller MP; Hauri-Hohl M; Zhanybekova S; Balciunaite G; Na KJ; Jeker LT; Hafen K; Tsukamoto N; Amagai T; Taketo MM; Krenger W; Holländer GA
    J Immunol; 2009 Mar; 182(5):2997-3007. PubMed ID: 19234195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Oxygen Submersion Fetal Thymus Organ Cultures Enable FOXN1-Dependent and -Independent Support of T Lymphopoiesis.
    Han J; Zúñiga-Pflücker JC
    Front Immunol; 2021; 12():652665. PubMed ID: 33859647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of a complete thymic microenvironment by MTS24(+) thymic epithelial cells.
    Gill J; Malin M; Holländer GA; Boyd R
    Nat Immunol; 2002 Jul; 3(7):635-42. PubMed ID: 12068292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of an Intronic Regulatory Element Necessary for Tissue-Specific Expression of
    Larsen BM; Cowan JE; Wang Y; Tanaka Y; Zhao Y; Voisin B; Constantinides MG; Nagao K; Belkaid Y; Awasthi P; Takahama Y; Bhandoola A
    J Immunol; 2019 Aug; 203(3):686-695. PubMed ID: 31243087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.