These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17158267)

  • 1. Myosin light chain phosphorylation inhibits muscle fiber shortening velocity in the presence of vanadate.
    Franks-Skiba K; Lardelli R; Goh G; Cooke R
    Am J Physiol Regul Integr Comp Physiol; 2007 Apr; 292(4):R1603-12. PubMed ID: 17158267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin regulatory light chain phosphorylation inhibits shortening velocities of skeletal muscle fibers in the presence of the myosin inhibitor blebbistatin.
    Stewart M; Franks-Skiba K; Cooke R
    J Muscle Res Cell Motil; 2009; 30(1-2):17-27. PubMed ID: 19125340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vanadate oxidation activates contraction in skinned smooth muscle without myosin light chain phosphorylation.
    Lalli MJ; Obara K; Paul RJ
    Am J Physiol; 1997 Jan; 272(1 Pt 1):C278-88. PubMed ID: 9038834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of shortening velocity of skinned skeletal muscle fibers in conditions that mimic fatigue.
    Karatzaferi C; Franks-Skiba K; Cooke R
    Am J Physiol Regul Integr Comp Physiol; 2008 Mar; 294(3):R948-55. PubMed ID: 18077511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of vanadate on force and myosin light chain phosphorylation in skinned aortic smooth muscle.
    Morimoto S; Sato O; Ogawa Y
    J Biochem; 1999 Jul; 126(1):146-52. PubMed ID: 10393332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of orientation and rotational motion of skeletal muscle cross-bridges containing phosphorylated and dephosphorylated myosin regulatory light chain.
    Midde K; Rich R; Marandos P; Fudala R; Li A; Gryczynski I; Borejdo J
    J Biol Chem; 2013 Mar; 288(10):7012-23. PubMed ID: 23319584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contractile properties of rabbit psoas muscle fibres inhibited by beryllium fluoride.
    Regnier M; Chase PB; Martyn DA
    J Muscle Res Cell Motil; 1999 May; 20(4):425-32. PubMed ID: 10531623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measured and modeled properties of mammalian skeletal muscle. I. The effects of post-activation potentiation on the time course and velocity dependencies of force production.
    Brown IE; Loeb GE
    J Muscle Res Cell Motil; 1999 Aug; 20(5-6):443-56. PubMed ID: 10555063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myosin head interactions in Ca2+-activated skinned rabbit skeletal muscle fibers.
    Wilson GJ; Shull SE; Naber NI; Cooke R
    J Biochem; 1997 Sep; 122(3):563-71. PubMed ID: 9348085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers.
    Persechini A; Stull JT; Cooke R
    J Biol Chem; 1985 Jul; 260(13):7951-4. PubMed ID: 3839239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myosin regulatory light chain modulates the Ca2+ dependence of the kinetics of tension development in skeletal muscle fibers.
    Patel JR; Diffee GM; Moss RL
    Biophys J; 1996 May; 70(5):2333-40. PubMed ID: 9172757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What limits the velocity of fast-skeletal muscle contraction in mammals?
    Nyitrai M; Rossi R; Adamek N; Pellegrino MA; Bottinelli R; Geeves MA
    J Mol Biol; 2006 Jan; 355(3):432-42. PubMed ID: 16325202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of muscle force by vanadate.
    Wilson GJ; Shull SE; Cooke R
    Biophys J; 1995 Jan; 68(1):216-26. PubMed ID: 7711244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The direct molecular effects of fatigue and myosin regulatory light chain phosphorylation on the actomyosin contractile apparatus.
    Greenberg MJ; Mealy TR; Jones M; Szczesna-Cordary D; Moore JR
    Am J Physiol Regul Integr Comp Physiol; 2010 Apr; 298(4):R989-96. PubMed ID: 20089714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemo-mechanical energy transduction in relation to myosin isoform composition in skeletal muscle fibres of the rat.
    Reggiani C; Potma EJ; Bottinelli R; Canepari M; Pellegrino MA; Stienen GJ
    J Physiol; 1997 Jul; 502 ( Pt 2)(Pt 2):449-60. PubMed ID: 9263923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence polarization transients from rhodamine isomers on the myosin regulatory light chain in skeletal muscle fibers.
    Hopkins SC; Sabido-David C; Corrie JE; Irving M; Goldman YE
    Biophys J; 1998 Jun; 74(6):3093-110. PubMed ID: 9635763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered kinetics of contraction in skeletal muscle fibers containing a mutant myosin regulatory light chain with reduced divalent cation binding.
    Diffee GM; Patel JR; Reinach FC; Greaser ML; Moss RL
    Biophys J; 1996 Jul; 71(1):341-50. PubMed ID: 8804617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sliding distance per ATP molecule hydrolyzed by myosin heads during isotonic shortening of skinned muscle fibers.
    Higuchi H; Goldman YE
    Biophys J; 1995 Oct; 69(4):1491-507. PubMed ID: 8534820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetanic force potentiation of mouse fast muscle is shortening speed dependent.
    Gittings W; Huang J; Vandenboom R
    J Muscle Res Cell Motil; 2012 Oct; 33(5):359-68. PubMed ID: 23054096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.