These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 17158589)

  • 21. PhCESA3 silencing inhibits elongation and stimulates radial expansion in petunia.
    Yang W; Cai Y; Hu L; Wei Q; Chen G; Bai M; Wu H; Liu J; Yu Y
    Sci Rep; 2017 Feb; 7():41471. PubMed ID: 28150693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A natural antisense transcript of the Petunia hybrida Sho gene suggests a role for an antisense mechanism in cytokinin regulation.
    Zubko E; Meyer P
    Plant J; 2007 Dec; 52(6):1131-9. PubMed ID: 17944812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of floral meristem determinacy in petunia by MADS-box transcription factors.
    Ferrario S; Shchennikova AV; Franken J; Immink RG; Angenent GC
    Plant Physiol; 2006 Mar; 140(3):890-8. PubMed ID: 16428599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Promoter activity of a putative pollen monosaccharide transporter in Petunia hybrida and characterisation of a transposon insertion mutant.
    Garrido D; Busscher J; van Tunen AJ
    Protoplasma; 2006 Aug; 228(1-3):3-11. PubMed ID: 16937049
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Paralogous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes differentially regulate leaf initiation and reproductive phase change in petunia.
    Preston JC; Jorgensen SA; Orozco R; Hileman LC
    Planta; 2016 Feb; 243(2):429-40. PubMed ID: 26445769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Petunia PLEIOTROPIC DRUG RESISTANCE 1 Is a Strigolactone Short-Distance Transporter with Long-Distance Outcomes.
    Shiratake K; Notaguchi M; Makino H; Sawai Y; Borghi L
    Plant Cell Physiol; 2019 Aug; 60(8):1722-1733. PubMed ID: 31076773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The petunia AGL6 gene has a SEPALLATA-like function in floral patterning.
    Rijpkema AS; Zethof J; Gerats T; Vandenbussche M
    Plant J; 2009 Oct; 60(1):1-9. PubMed ID: 19453449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Capsicum annuum S (CaS) promotes reproductive transition and is required for flower formation in pepper (Capsicum annuum).
    Cohen O; Borovsky Y; David-Schwartz R; Paran I
    New Phytol; 2014 May; 202(3):1014-1023. PubMed ID: 24716519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The cytochrome P450 CYP86A22 is a fatty acyl-CoA omega-hydroxylase essential for Estolide synthesis in the stigma of Petunia hybrida.
    Han J; Clement JM; Li J; King A; Ng S; Jaworski JG
    J Biol Chem; 2010 Feb; 285(6):3986-3996. PubMed ID: 19940120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Jasmonates act positively in adventitious root formation in petunia cuttings.
    Lischweski S; Muchow A; Guthörl D; Hause B
    BMC Plant Biol; 2015 Sep; 15():229. PubMed ID: 26394764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Petunia Ap2-like genes and their role in flower and seed development.
    Maes T; Van de Steene N; Zethof J; Karimi M; D'Hauw M; Mares G; Van Montagu M; Gerats T
    Plant Cell; 2001 Feb; 13(2):229-44. PubMed ID: 11226182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential recruitment of WOX transcription factors for lateral development and organ fusion in Petunia and Arabidopsis.
    Vandenbussche M; Horstman A; Zethof J; Koes R; Rijpkema AS; Gerats T
    Plant Cell; 2009 Aug; 21(8):2269-83. PubMed ID: 19717616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brassinosteroid biosynthesis and signalling in Petunia hybrida.
    Verhoef N; Yokota T; Shibata K; de Boer GJ; Gerats T; Vandenbussche M; Koes R; Souer E
    J Exp Bot; 2013 May; 64(8):2435-48. PubMed ID: 23599276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Manipulation of MKS1 gene expression affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes.
    Gargul JM; Mibus H; Serek M
    Plant Biotechnol J; 2015 Jan; 13(1):51-61. PubMed ID: 25082411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological changes besides the enhancement of pigmentation in Petunia hybrida caused by overexpression of PhAN2, an R2R3-MYB transcription factor.
    Li G; Serek M; Gehl C
    Plant Cell Rep; 2023 Mar; 42(3):609-627. PubMed ID: 36690873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida.
    Zenoni S; Fasoli M; Tornielli GB; Dal Santo S; Sanson A; de Groot P; Sordo S; Citterio S; Monti F; Pezzotti M
    New Phytol; 2011 Aug; 191(3):662-677. PubMed ID: 21534969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PhMYB4 fine-tunes the floral volatile signature of Petunia x hybrida through PhC4H.
    Colquhoun TA; Kim JY; Wedde AE; Levin LA; Schmitt KC; Schuurink RC; Clark DG
    J Exp Bot; 2011 Jan; 62(3):1133-43. PubMed ID: 21068208
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and Characterization of the FLOWERING LOCUS T/TERMINAL FLOWER 1 Gene Family in
    Wu L; Li F; Deng Q; Zhang S; Zhou Q; Chen F; Liu B; Bao M; Liu G
    DNA Cell Biol; 2019 Sep; 38(9):982-995. PubMed ID: 31411493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sucrose-induced anthocyanin accumulation in vegetative tissue of Petunia plants requires anthocyanin regulatory transcription factors.
    Ai TN; Naing AH; Arun M; Lim SH; Kim CK
    Plant Sci; 2016 Nov; 252():144-150. PubMed ID: 27717450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PhGRL2 protein, interacting with PhACO1, is involved in flower senescence in the petunia.
    Tan Y; Liu J; Huang F; Guan J; Zhong S; Tang N; Zhao J; Yang W; Yu Y
    Mol Plant; 2014 Aug; 7(8):1384-1387. PubMed ID: 24618881
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.