These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 17158614)

  • 21. Genetic and biochemical characterization of the dioxygenase involved in lateral dioxygenation of dibenzofuran from Rhodococcus opacus strain SAO101.
    Kimura N; Kitagawa W; Mori T; Nakashima N; Tamura T; Kamagata Y
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):474-84. PubMed ID: 16736088
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Utilization of pyrene and benzoate in Mycobacterium isolate KMS is regulated differentially by catabolic repression.
    Zhang C; Anderson AJ
    J Basic Microbiol; 2013 Jan; 53(1):81-92. PubMed ID: 22733411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathways in the degradation of hydrolyzed alcohols of butyl benzyl phthalate in metabolically diverse Gordonia sp. strain MTCC 4818.
    Chatterjee S; Mallick S; Dutta TK
    J Mol Microbiol Biotechnol; 2005; 9(2):110-20. PubMed ID: 16319500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 2,3-Dihydroxybenzoate meta-Cleavage Pathway is Involved in o-Phthalate Utilization in Pseudomonas sp. strain PTH10.
    Kasai D; Iwasaki T; Nagai K; Araki N; Nishi T; Fukuda M
    Sci Rep; 2019 Feb; 9(1):1253. PubMed ID: 30718753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complete degradation of butyl benzyl phthalate by a defined bacterial consortium: role of individual isolates in the assimilation pathway.
    Chatterjee S; Dutta TK
    Chemosphere; 2008 Jan; 70(5):933-41. PubMed ID: 17669462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aerobic degradation of diethyl phthalate by Sphingomonas sp.
    Fang HH; Liang D; Zhang T
    Bioresour Technol; 2007 Feb; 98(3):717-20. PubMed ID: 16563747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glucose-mediated transcriptional repression of PCB/biphenyl catabolic genes in Rhodococcus jostii RHA1.
    Araki N; Niikura Y; Miyauchi K; Kasai D; Masai E; Fukuda M
    J Mol Microbiol Biotechnol; 2011; 20(1):53-62. PubMed ID: 21335979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alkanesulfonate degradation by novel strains of Achromobacter xylosoxidans, Tsukamurella wratislaviensis and Rhodococcus sp., and evidence for an ethanesulfonate monooxygenase in A. xylosoxidans strain AE4.
    Erdlenbruch BN; Kelly DP; Murrell JC
    Arch Microbiol; 2001 Dec; 176(6):406-14. PubMed ID: 11734883
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase.
    Rapp P; Gabriel-Jürgens LHE
    Microbiology (Reading); 2003 Oct; 149(Pt 10):2879-2890. PubMed ID: 14523120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of two-component regulatory genes involved in o-xylene degradation by Rhodococcus sp. strain DK17.
    Kim D; Chae JC; Zylstra GJ; Sohn HY; Kwon GS; Kim E
    J Microbiol; 2005 Feb; 43(1):49-53. PubMed ID: 15765058
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradation of phthalate isomers by Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4.
    Vamsee-Krishna C; Mohan Y; Phale PS
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1263-9. PubMed ID: 16607524
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Transcriptomic and benzoate metabolic pathways of Rhodococcus sp. R04 cultured in biphenyl].
    Yang X; Xi J
    Wei Sheng Wu Xue Bao; 2015 Jul; 55(7):851-62. PubMed ID: 26710604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptomic analysis reveals a bifurcated terephthalate degradation pathway in Rhodococcus sp. strain RHA1.
    Hara H; Eltis LD; Davies JE; Mohn WW
    J Bacteriol; 2007 Mar; 189(5):1641-7. PubMed ID: 17142403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intradiol pathway of para-cresol conversion by Rhodococcus opacus 1CP.
    Kolomytseva MP; Baskunov BP; Golovleva LA
    Biotechnol J; 2007 Jul; 2(7):886-93. PubMed ID: 17506026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B.
    Eaton RW
    J Bacteriol; 2001 Jun; 183(12):3689-703. PubMed ID: 11371533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate on biotransformation of o-phthalate in sediment slurries under sulfate-reducing conditions.
    Liu SM; Lin YL; Chi WC
    Chemosphere; 2005 Mar; 59(1):41-8. PubMed ID: 15698642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Individual or synchronous biodegradation of di-n-butyl phthalate and phenol by Rhodococcus ruber strain DP-2.
    He Z; Niu C; Lu Z
    J Hazard Mater; 2014 May; 273():104-9. PubMed ID: 24727011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and characterization of catechol 1,2-dioxygenases from Rhodococcus rhodnii strain 135 and Rhodococcus rhodochrous strain 89: comparison with analogous enzymes of the ordinary and modified ortho-cleavage pathways.
    Solyanikova IP; Golovlev EL; Lisnyak OV; Golovleva LA
    Biochemistry (Mosc); 1999 Jul; 64(7):824-31. PubMed ID: 10424908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Specificity of
    Emelyanova EV; Solyanikova IP
    Front Biosci (Elite Ed); 2022 Jun; 14(2):15. PubMed ID: 35730456
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel benzoate-degrading Rhodococcus strain contains three catA genes with one being transcriptionally active during the growth on benzoate.
    Zhao K; Guo X; Gong J
    J Environ Biol; 2013 Apr; 34(2 Spec No):401-7. PubMed ID: 24620611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.