These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 17158666)
1. Only one of five groEL genes is required for viability and successful symbiosis in Sinorhizobium meliloti. Bittner AN; Foltz A; Oke V J Bacteriol; 2007 Mar; 189(5):1884-9. PubMed ID: 17158666 [TBL] [Abstract][Full Text] [Related]
2. Multiple groESL operons are not key targets of RpoH1 and RpoH2 in Sinorhizobium meliloti. Bittner AN; Oke V J Bacteriol; 2006 May; 188(10):3507-15. PubMed ID: 16672605 [TBL] [Abstract][Full Text] [Related]
3. Expression and function of a groEL paralog in the thermophilic cyanobacterium Thermosynechococcus elongatus under heat and cold stress. Sato S; Ikeuchi M; Nakamoto H FEBS Lett; 2008 Oct; 582(23-24):3389-95. PubMed ID: 18786533 [TBL] [Abstract][Full Text] [Related]
5. Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth. López-Lara IM; Gao JL; Soto MJ; Solares-Pérez A; Weissenmayer B; Sohlenkamp C; Verroios GP; Thomas-Oates J; Geiger O Mol Plant Microbe Interact; 2005 Sep; 18(9):973-82. PubMed ID: 16167767 [TBL] [Abstract][Full Text] [Related]
6. Non-housekeeping, non-essential GroEL (chaperonin) has acquired novel structure and function beneficial under stress in cyanobacteria. Nakamoto H; Kojima K Physiol Plant; 2017 Nov; 161(3):296-310. PubMed ID: 28597961 [TBL] [Abstract][Full Text] [Related]
7. Identification of new potential regulators of the Medicago truncatula-Sinorhizobium meliloti symbiosis using a large-scale suppression subtractive hybridization approach. Godiard L; Niebel A; Micheli F; Gouzy J; Ott T; Gamas P Mol Plant Microbe Interact; 2007 Mar; 20(3):321-32. PubMed ID: 17378435 [TBL] [Abstract][Full Text] [Related]
8. Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection. Capela D; Filipe C; Bobik C; Batut J; Bruand C Mol Plant Microbe Interact; 2006 Apr; 19(4):363-72. PubMed ID: 16610739 [TBL] [Abstract][Full Text] [Related]
9. Cloning, characterization and functional analysis of groESL operon from thermophilic cyanobacterium Synechococcus vulcanus. Tanaka N; Hiyama T; Nakamoto H Biochim Biophys Acta; 1997 Dec; 1343(2):335-48. PubMed ID: 9434123 [TBL] [Abstract][Full Text] [Related]
10. Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth. Rodríguez-Quiñones F; Maguire M; Wallington EJ; Gould PS; Yerko V; Downie JA; Lund PA Arch Microbiol; 2005 May; 183(4):253-65. PubMed ID: 15830189 [TBL] [Abstract][Full Text] [Related]
11. The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Ogawa J; Long SR Genes Dev; 1995 Mar; 9(6):714-29. PubMed ID: 7729688 [TBL] [Abstract][Full Text] [Related]
12. Mixture of endophytic Agrobacterium and Sinorhizobium meliloti strains could induce nonspecific nodulation on some woody legumes. Liu J; Wang ET; Ren da W; Chen WX Arch Microbiol; 2010 Mar; 192(3):229-34. PubMed ID: 20098981 [TBL] [Abstract][Full Text] [Related]
13. Comparative biochemical characterization of two GroEL homologs from the cyanobacterium Synechococcus elongatus PCC 7942. Huq S; Sueoka K; Narumi S; Arisaka F; Nakamoto H Biosci Biotechnol Biochem; 2010; 74(11):2273-80. PubMed ID: 21071850 [TBL] [Abstract][Full Text] [Related]
14. A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation. Djordjevic MA; Chen HC; Natera S; Van Noorden G; Menzel C; Taylor S; Renard C; Geiger O; Weiller GF; Mol Plant Microbe Interact; 2003 Jun; 16(6):508-24. PubMed ID: 12795377 [TBL] [Abstract][Full Text] [Related]
15. Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli. Gupta P; Aggarwal N; Batra P; Mishra S; Chaudhuri TK Int J Biochem Cell Biol; 2006; 38(11):1975-85. PubMed ID: 16822698 [TBL] [Abstract][Full Text] [Related]
16. Molecular analysis of the multiple GroEL proteins of Chlamydiae. Karunakaran KP; Noguchi Y; Read TD; Cherkasov A; Kwee J; Shen C; Nelson CC; Brunham RC J Bacteriol; 2003 Mar; 185(6):1958-66. PubMed ID: 12618460 [TBL] [Abstract][Full Text] [Related]
17. A symbiotic mutant of Sinorhizobium meliloti reveals a novel genetic pathway involving succinoglycan biosynthetic functions. Griffitts JS; Long SR Mol Microbiol; 2008 Mar; 67(6):1292-306. PubMed ID: 18284576 [TBL] [Abstract][Full Text] [Related]
18. Identification of a hydroxyproline transport system in the legume endosymbiont Sinorhizobium meliloti. Maclean AM; White CE; Fowler JE; Finan TM Mol Plant Microbe Interact; 2009 Sep; 22(9):1116-27. PubMed ID: 19656046 [TBL] [Abstract][Full Text] [Related]
19. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Ojha A; Anand M; Bhatt A; Kremer L; Jacobs WR; Hatfull GF Cell; 2005 Dec; 123(5):861-73. PubMed ID: 16325580 [TBL] [Abstract][Full Text] [Related]
20. Sinorhizobium meliloti nifA mutant induces different gene expression profile from wild type in Alfalfa nodules. Gong ZY; He ZS; Zhu JB; Yu GQ; Zou HS Cell Res; 2006 Oct; 16(10):818-29. PubMed ID: 17001343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]