These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 17158944)
61. Occurrence of antipseudomonal beta-lactams and aminoglycosides resistance in Pseudomonas aeruginosa during therapy. Pagani L; Scarabelli M; Cereda PM; Debiaggi M Microbiologica; 1987 Jan; 10(1):103-10. PubMed ID: 3106759 [TBL] [Abstract][Full Text] [Related]
62. High-Level Resistance to Aminoglycosides due to 16S rRNA Methylation in Enterobacteriaceae Isolates. Yeganeh Sefidan F; Mohammadzadeh-Asl Y; Ghotaslou R Microb Drug Resist; 2019 Nov; 25(9):1261-1265. PubMed ID: 31211656 [No Abstract] [Full Text] [Related]
63. A culture medium for screening 16S rRNA methylase-producing pan-aminoglycoside resistant Gram-negative bacteria. Nordmann P; Mazé A; Culebras E; Dobias J; Jayol A; Poirel L Diagn Microbiol Infect Dis; 2018 Jun; 91(2):118-122. PubMed ID: 29496380 [TBL] [Abstract][Full Text] [Related]
64. Emergence of Mohanam L; Menon T Indian J Med Microbiol; 2017; 35(2):282-285. PubMed ID: 28681822 [TBL] [Abstract][Full Text] [Related]
65. blaVIM-7, an evolutionarily distinct metallo-beta-lactamase gene in a Pseudomonas aeruginosa isolate from the United States. Toleman MA; Rolston K; Jones RN; Walsh TR Antimicrob Agents Chemother; 2004 Jan; 48(1):329-32. PubMed ID: 14693560 [TBL] [Abstract][Full Text] [Related]
66. Occurrence of Acquired 16S rRNA Methyltransferase-Mediated Aminoglycoside Resistance in Clinical Isolates of Enterobacteriaceae within a Tertiary Referral Hospital of Northeast India. Wangkheimayum J; Paul D; Dhar D; Nepram R; Chetri S; Bhowmik D; Chakravarty A; Bhattacharjee A Antimicrob Agents Chemother; 2017 Jun; 61(6):. PubMed ID: 28320725 [TBL] [Abstract][Full Text] [Related]
67. New Subclass B1 Metallo-β-Lactamase Gene from a Clinical Pathogenic Myroides odoratus Strain. Xu S; Chen Y; Fu Z; Li Y; Shi G; Xu X; Liu Y; Wang M Microb Drug Resist; 2018 Sep; 24(7):909-914. PubMed ID: 29227741 [TBL] [Abstract][Full Text] [Related]
68. Genetic environments of the rmtA gene in Pseudomonas aeruginosa clinical isolates. Yamane K; Doi Y; Yokoyama K; Yagi T; Kurokawa H; Shibata N; Shibayama K; Kato H; Arakawa Y Antimicrob Agents Chemother; 2004 Jun; 48(6):2069-74. PubMed ID: 15155201 [TBL] [Abstract][Full Text] [Related]
69. Molecular characterization of SPM-1, a novel metallo-beta-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. Toleman MA; Simm AM; Murphy TA; Gales AC; Biedenbach DJ; Jones RN; Walsh TR J Antimicrob Chemother; 2002 Nov; 50(5):673-9. PubMed ID: 12407123 [TBL] [Abstract][Full Text] [Related]
70. SPM-1-producing Pseudomonas aeruginosa ST277 carries a chromosomal pack of acquired resistance genes: An example of high-risk clone associated with 'intrinsic resistome'. Galetti R; Andrade LN; Varani AM; Darini ALC J Glob Antimicrob Resist; 2019 Mar; 16():183-186. PubMed ID: 30586621 [TBL] [Abstract][Full Text] [Related]
71. Instability of the 16S rRNA methyltransferase-encoding npmA gene: why have bacterial cells possessing npmA not spread despite their high and broad resistance to aminoglycosides? Ishizaki Y; Shibuya Y; Hayashi C; Inoue K; Kirikae T; Tada T; Miyoshi-Akiyama T; Igarashi M J Antibiot (Tokyo); 2018 Sep; 71(9):798-807. PubMed ID: 29884863 [TBL] [Abstract][Full Text] [Related]
72. Association of extended-spectrum β-lactamase VEB-5 and 16S rRNA methyltransferase armA in Salmonella enterica from the United Kingdom. Hidalgo L; Hopkins KL; Wareham DW; Gutierrez B; González-Zorn B Antimicrob Agents Chemother; 2012 Sep; 56(9):4985-7. PubMed ID: 22710120 [No Abstract] [Full Text] [Related]
73. Pseudomonas aeruginosa with NDM-1, DIM-1 and PME-1 β-lactamases, and RmtD3 16S rRNA methylase, encoded by new genomic islands. Urbanowicz P; Izdebski R; Baraniak A; Żabicka D; Ziółkowski G; Hryniewicz W; Gniadkowski M J Antimicrob Chemother; 2019 Oct; 74(10):3117-3119. PubMed ID: 31211367 [No Abstract] [Full Text] [Related]
75. Heterologous Expression and Functional Characterization of the Exogenously Acquired Aminoglycoside Resistance Methyltransferases RmtD, RmtD2, and RmtG. Corrêa LL; Witek MA; Zelinskaya N; Picão RC; Conn GL Antimicrob Agents Chemother; 2016 Jan; 60(1):699-702. PubMed ID: 26552988 [TBL] [Abstract][Full Text] [Related]
76. Biochemical characterization of the acquired metallo-beta-lactamase SPM-1 from Pseudomonas aeruginosa. Murphy TA; Simm AM; Toleman MA; Jones RN; Walsh TR Antimicrob Agents Chemother; 2003 Feb; 47(2):582-7. PubMed ID: 12543663 [TBL] [Abstract][Full Text] [Related]
77. Draft genome sequence of a multidrug-resistant Aeromonas hydrophila ST508 strain carrying rmtD and bla Moura Q; Fernandes MR; Cerdeira L; Santos ACM; de Souza TA; Ienne S; Pignatari ACC; Gales AC; Silva RM; Lincopan N J Glob Antimicrob Resist; 2017 Sep; 10():289-290. PubMed ID: 28739226 [TBL] [Abstract][Full Text] [Related]
78. Aminoglycoside Resistance: Updates with a Focus on Acquired 16S Ribosomal RNA Methyltransferases. Wachino JI; Doi Y; Arakawa Y Infect Dis Clin North Am; 2020 Dec; 34(4):887-902. PubMed ID: 33011054 [TBL] [Abstract][Full Text] [Related]
79. Detection of methyltransferases conferring high-level resistance to aminoglycosides in enterobacteriaceae from Europe, North America, and Latin America. Fritsche TR; Castanheira M; Miller GH; Jones RN; Armstrong ES Antimicrob Agents Chemother; 2008 May; 52(5):1843-5. PubMed ID: 18347105 [TBL] [Abstract][Full Text] [Related]