These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 17159213)
1. Repellents have functionally replaced hydrophobins in mediating attachment to a hydrophobic surface and in formation of hydrophobic aerial hyphae in Ustilago maydis. Teertstra WR; Deelstra HJ; Vranes M; Bohlmann R; Kahmann R; Kämper J; Wösten HAB Microbiology (Reading); 2006 Dec; 152(Pt 12):3607-3612. PubMed ID: 17159213 [TBL] [Abstract][Full Text] [Related]
2. A novel class of small amphipathic peptides affect aerial hyphal growth and surface hydrophobicity in Ustilago maydis. Wösten HA; Bohlmann R; Eckerskorn C; Lottspeich F; Bölker M; Kahmann R EMBO J; 1996 Aug; 15(16):4274-81. PubMed ID: 8861956 [TBL] [Abstract][Full Text] [Related]
3. Absence of repellents in Ustilago maydis induces genes encoding small secreted proteins. Teertstra WR; Krijgsheld P; Wösten HA Antonie Van Leeuwenhoek; 2011 Aug; 100(2):219-29. PubMed ID: 21626092 [TBL] [Abstract][Full Text] [Related]
4. Lack of evidence for a role of hydrophobins in conferring surface hydrophobicity to conidia and hyphae of Botrytis cinerea. Mosbach A; Leroch M; Mendgen KW; Hahn M BMC Microbiol; 2011 Jan; 11():10. PubMed ID: 21232149 [TBL] [Abstract][Full Text] [Related]
5. Identification and characterization of secreted and pathogenesis-related proteins in Ustilago maydis. Müller O; Schreier PH; Uhrig JF Mol Genet Genomics; 2008 Jan; 279(1):27-39. PubMed ID: 17917743 [TBL] [Abstract][Full Text] [Related]
6. The filament-specific Rep1-1 repellent of the phytopathogen Ustilago maydis forms functional surface-active amyloid-like fibrils. Teertstra WR; van der Velden GJ; de Jong JF; Kruijtzer JA; Liskamp RM; Kroon-Batenburg LM; Müller WH; Gebbink MF; Wösten HA J Biol Chem; 2009 Apr; 284(14):9153-9. PubMed ID: 19164282 [TBL] [Abstract][Full Text] [Related]
7. The SC15 protein of Schizophyllum commune mediates formation of aerial hyphae and attachment in the absence of the SC3 hydrophobin. Lugones LG; de Jong JF; de Vries OM; Jalving R; Dijksterhuis J; Wösten HA Mol Microbiol; 2004 Jul; 53(2):707-16. PubMed ID: 15228546 [TBL] [Abstract][Full Text] [Related]
8. Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Kershaw MJ; Talbot NJ Fungal Genet Biol; 1998 Feb; 23(1):18-33. PubMed ID: 9501475 [TBL] [Abstract][Full Text] [Related]
9. A small Ustilago maydis effector acts as a novel adhesin for hyphal aggregation in plant tumors. Fukada F; Rössel N; Münch K; Glatter T; Kahmann R New Phytol; 2021 Jul; 231(1):416-431. PubMed ID: 33843063 [TBL] [Abstract][Full Text] [Related]
10. Functional analysis of hydrophobin genes in sexual development of Botrytis cinerea. Terhem RB; van Kan JA Fungal Genet Biol; 2014 Oct; 71():42-51. PubMed ID: 25181040 [TBL] [Abstract][Full Text] [Related]
11. A hydrophobin gene, Hyd9, plays an important role in the formation of aerial hyphae and primordia in Flammulina filiformis. Tao Y; Chen R; Yan J; Long Y; Tong Z; Song H; Xie B Gene; 2019 Jul; 706():84-90. PubMed ID: 31028867 [TBL] [Abstract][Full Text] [Related]
12. Hydrophobins in the Life Cycle of the Ectomycorrhizal Basidiomycete Tricholoma vaccinum. Sammer D; Krause K; Gube M; Wagner K; Kothe E PLoS One; 2016; 11(12):e0167773. PubMed ID: 27936063 [TBL] [Abstract][Full Text] [Related]
13. Hydrophobins: multipurpose proteins. Wösten HA Annu Rev Microbiol; 2001; 55():625-46. PubMed ID: 11544369 [TBL] [Abstract][Full Text] [Related]
14. A class-V myosin required for mating, hyphal growth, and pathogenicity in the dimorphic plant pathogen Ustilago maydis. Weber I; Gruber C; Steinberg G Plant Cell; 2003 Dec; 15(12):2826-42. PubMed ID: 14615599 [TBL] [Abstract][Full Text] [Related]
15. An Ustilago maydis septin is required for filamentous growth in culture and for full symptom development on maize. Boyce KJ; Chang H; D'Souza CA; Kronstad JW Eukaryot Cell; 2005 Dec; 4(12):2044-56. PubMed ID: 16339722 [TBL] [Abstract][Full Text] [Related]
16. [Parasitic strategy and regulation mechanism of Ustilago maydis - A review]. Li Z; Yan L; Yan Z Wei Sheng Wu Xue Bao; 2016 Sep; 56(9):1385-97. PubMed ID: 29738207 [TBL] [Abstract][Full Text] [Related]
17. Hydrophobin Genes Involved in Formation of Aerial Hyphae and Fruit Bodies in Schizophyllum. Wessels J; De Vries O; Asgeirsdottir SA; Schuren F Plant Cell; 1991 Aug; 3(8):793-799. PubMed ID: 12324614 [TBL] [Abstract][Full Text] [Related]
18. The fungal hydrophobin Sc3p self-assembles at the surface of aerial hyphae as a protein membrane constituting the hydrophobic rodlet layer. Wösten HA; Asgeirsdóttir SA; Krook JH; Drenth JH; Wessels JG Eur J Cell Biol; 1994 Feb; 63(1):122-9. PubMed ID: 8005099 [TBL] [Abstract][Full Text] [Related]
19. Isolation of UmRrm75, a gene involved in dimorphism and virulence of Ustilago maydis. Rodríguez-Kessler M; Baeza-Montañez L; García-Pedrajas MD; Tapia-Moreno A; Gold S; Jiménez-Bremont JF; Ruiz-Herrera J Microbiol Res; 2012 May; 167(5):270-82. PubMed ID: 22154329 [TBL] [Abstract][Full Text] [Related]
20. Quantifying biomolecular hydrophobicity: Single molecule force spectroscopy of class II hydrophobins. Paananen A; Weich S; Szilvay GR; Leitner M; Tappura K; Ebner A J Biol Chem; 2021; 296():100728. PubMed ID: 33933454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]